Informes Técnicos Ciemat

1426 Febrero, 2018

Estudio del Potencial Solar del Municipio de Alpedrete (Comunidad de Madrid, España)

J. Domínguez A. M^a. Martín J. Amador G. Sande J. A. Alfonso G. Romero

gobierno De españa

MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Informes Técnicos Ciemat

Estudio del Potencial Solar del Municipio de Alpedrete (Comunidad de Madrid, España)

J. Domínguez *(Dirección)* A. M^a. Martín J. Amador G. Sande J. A. Alfonso G. Romero

Departamento de Energía

Toda correspondencia en relación con este trabajo debe dirigirse al Servicio de Información y Documentación, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Ciudad Universitaria, 28040-MADRID, ESPAÑA.

Las solicitudes de ejemplares deben dirigirse a este mismo Servicio.

Los descriptores se han seleccionado del Thesauro del DOE para describir las materias que contiene este informe con vistas a su recuperación. La catalogación se ha hecho utilizando el documento DOE/TIC-4602 (Rev. 1) Descriptive Cataloguing On-Line, y la clasificación de acuerdo con el documento DOE/TIC.4584-R7 Subject Categories and Scope publicados por el Office of Scientific and Technical Information del Departamento de Energía de los Estados Unidos.

Se autoriza la reproducción de los resúmenes analíticos que aparecen en esta publicación.

Catálogo general de publicaciones oficiales <u>http://www.060.es</u>

Depósito Legal: M-26385-2011 ISSN: 1135-9420 NIPO: 058-18-002-5

Editorial CIEMAT

CLASIFICACIÓN DOE Y DESCRIPTORES

S14

SOLAR ENERGY; SOLAR THERMAL CONVERSION; SOLAR RADIATION; PHOTOVOLTAIC CONVERSION; ENERGY SUPPLIES; ENERGY DEMAND; ENVIRONMENTAL QUALITY

Estudio del Potencial Solar del Municipio de Alpedrete (Comunidad de Madrid, España)

Domínguez, J.; Martín, A. M^a.; Amador, J.; Sande, G.; Alfonso, J. A.; Romero, G. 99 pp. 18 refs. 34 figs. 3 tablas

Resumen:

El Ayuntamiento de Alpedrete ha realizado una clara apuesta por un cambio en su matriz energética fomentando el uso de las energías renovables. En esta línea se enmarca este estudio sobre el potencial solar del municipio de Alpedrete, realizado por el CIEMAT con el apoyo de la Universidad Politécnica de Madrid. El proyecto aplica el modelo gSolarRoof a los edificios del municipio, arrojando unos resultados alentadores para el aprovechamiento de la energía solar, tanto en la producción de electricidad de origen fotovoltaico como en la producción de agua caliente sanitaria mediante captadores solares térmicos.

El estudio se complementa con un análisis detallado del potencial fotovoltaico de algunos de los principales edificios de propiedad municipal (polideportivo, centro cultural, colegios...), condicionado por la actual legislación en la materia, sus resultados nos ofrecen el grado de cobertura de la demanda eléctrica que podría ser cubierto en estos edificios con energía solar.

Adicionalmente el informe recoge un detallado manual para el uso de la aplicación web donde podremos visualizar los resultados del proyecto, así como cartografía de detalle de los mismos.

La principal conclusión de este estudio es el gran potencial de Alpedrete para cubrir una buena parte de sus demandas energéticas domésticas mediante energía solar, solución que contribuirá sin duda a mejorar la calidad ambiental del municipio y el modo de vida de sus ciudadanos.

Study on the Potential for Solar Energy in the Municipality of Alpedrete (Region of Madrid, Spain)

Domínguez, J.; Martín, A. M^a.; Amador, J.; Sande, G.; Alfonso, J. A.; Romero, G. 99 pp. 18 refs. 34 figs. 3 tables

Abstract:

Alpedrete City Council has made a clear commitment to a change in its energy matrix by encouraging the use of renewable energy. In this line is framed this study on the solar potential of the municipality of Alpedrete, made by CIEMAT with the support of the Polytechnic University of Madrid. The project applies the gSolarRoof model to the buildings of the municipality, obtaining promising results for the use of solar energy, both in the production of electricity from photovoltaic sources and in the production of domestic hot water by means of solar thermal collectors.

The study is complemented by a detailed analysis of the photovoltaic potential of some of the main buildings of municipal ownership (sports center, cultural center, schools ...), conditioned by the current legislation on the subject, its results offer us the degree of coverage of the demand electrical that could be satisfied in these buildings with solar energy.

Additionally the report includes a detailed handbook for the use of the web application where we can see the results of the project, as well as detailed cartography of the same.

The main conclusion of this study is the great potential of Alpedrete to cover a good part of its domestic energy demands through solar energy, a solution that will undoubtedly contribute to improving the environmental quality of the municipality and the way of life of its citizens.

ÍNDICE

PRESENTACIÓN	3
1. INTRODUCCIÓN	5
2. OBJETO DE ESTUDIO	7
2.1. El municipio de Alpedrete	7
2.2. Los edificios municipales	8
3. FUENTES DE DATOS	10
4. METODOLOGÍA	12
4.1. Procesado de la información	12
4.2. Análisis del potencial solar del municipio con gSolarRoof	13
4.3. Análisis del potencial fotovoltaico de los edificios municipales	15
5. RESULTADOS	17
5.1. Término municipal	17
5.2. Edificios municipales	19
5.3. Presentación de los resultados	22
6. CONCLUSIONES	24
7. BIBLIOGRAFÍA	25
ÍNDICE DE FIGURAS	27
ÍNDICE DE TABLAS	28
ÍNDICE DE GRÁFICOS	28
ÍNDICE DE MAPAS	28
ANEXO I. RESULTADOS EDIFICIOS MUNICIPALES (gSolarRoof)	30
ANEXO II. POLIDEPORTIVO MUNICIPAL	31
ANEXO III. CENTRO CULTURAL ASUNCIÓN BALAGUER	36
ANEXO IV. COLEGIO CLARA CAMPOAMOR	42
ANEXO V. COLEGIO SANTA QUITERIA	46
ANEXO VI. COLEGIO EL PERALEJO	50
ANEXO VII. COLEGIO LOS NEGRALES	54
ANEXO VIII. MANUAL DE USUARIO DEL GEOPORTAL gSolarRoof	58
I. VENTANAS EMERGENTES	59
II. HERRAMIENTAS DE CONTROL	59
III. HERRAMIENTAS DE UTILIDADES	63
IV. BOTONES DESPLEGABLES	69
ANEXO IX. MAPAS TEMÁTICOS	74

PRESENTACIÓN

Año 2016: la energía eléctrica facturada en Alpedrete fue de 34 GWh (gigavatios-hora), según los datos del Instituto de Estadística de la Comunidad de Madrid. Esa electricidad fue lo que consumieron los ciudadanos en sus casas, empresas, locales y edificios públicos. ¿Son muchos o pocos gigavatios? ¿Dónde y cómo se producen?

El gobierno de Alpedrete sabe que el ahorro y la eficiencia energética es una obligación responsable. Es la respuesta a una realidad incuestionable: la energía es uno de los gastos más onerosos (por pesado y gravoso), también imprescindible, de un presupuesto municipal. Por ello, en Alpedrete se han tomado desde hace más de dos años medidas concretas que han reducido la factura energética en decenas de miles de euros y se han provocado y alentado comportamientos responsables.

Solpedrete es el nombre elegido, con los epígrafes: energía, verde, eficiencia y ahorro. Identifica intenciones y actos. Y una vez trazado el camino de la eficiencia y el ahorro, era momento de dar un paso desde el rigor científico. Por ello se buscó el apoyo del CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas) para desbrozar el sendero de la energía verde.

La pregunta que el CIEMAT se comprometió a contestar fue ¿qué superficie de los tejados de los edificios de Alpedrete es óptima para instalar tecnología solar fotovoltaica y térmica? Una vez cartografiada la incidencia del Sol en los más de 4.000 edificios que existen, la respuesta es: en la superficie óptima de captación se podrían instalar paneles solares fotovoltaicos con una potencia de 23 MWp y una capacidad de generación de 33 GWh al año.

La conclusión obtenida es que la tecnología solar fotovoltaica podría generar 33 GWh de electricidad, una cantidad equivalente a los 34 GWh consumidos por toda la población del municipio en el año 2016. Es decir, el 100%.

En cuanto a las posibilidades de instalación de tecnología solar térmica, el análisis del CIEMAT estima que la energía disponible se eleva a 100 GWh.

El argumento, expuesto así, es cuestionable (no todos los vecinos querrán instalar fotovoltaica o térmica en su casa o no se puede fiar el total de la demanda a una fuente de producción no constante), pero bien observado ofrece una clave: el cambio de modelo energético es factible tecnológicamente e imprescindible ambientalmente.

La generación de 33 GWh eléctricos mediante tecnología solar fotovoltaica y de 100 GWh con tecnología solar térmica supondría evitar la emisión a la atmósfera de 21.417 Toneladas y 20.400 Toneladas de CO₂, respectivamente. De esta manera, se reduciría en casi 42.000 Toneladas el efecto en la atmósfera del principal gas causante del efecto invernadero y el cambio climático.

Una tonelada de CO_2 ocupa 510 m³, lo que equivale a un cubo de 7'75 metros por cada lado (a 1 atmósfera de presión y 0°C de temperatura). Para almacenar las 42.000 Toneladas sería necesario un cubo de 325.712 metros de lado. Utilizando otro parámetro más tangible, se dejaría de emitir a la atmósfera el CO_2 que generan 42.000 ciudadanos europeos para alimentarse, calentarse y desplazarse durante más de un mes.

El cambio de modelo energético trasciende el hecho de usar una fuente de generación u otra, incide en la propiedad de la producción y el consumo. La ciudadanía amplía su competencia exclusiva actual como usuario final a la de productor y gestor de su energía. Es el inicio (en otros países ya consolidado) de una revolución: la participación de los ciudadanos en la producción energética y la democratización que tanto parece preocupar a legisladores y empresas de producción.

El CIEMAT y el Ayuntamiento de Alpedrete ponen a disposición de la ciudadanía el presente informe, así como la herramienta telemática para que conozca las opciones que le ofrece la energía solar en su propia casa.

Solpedrete, el Sol como fuente de vida y Alpedrete como escenario de esa vida.

Guiomar Romero y Jose Antonio Alfonso (Ayuntamiento de Alpedrete)

1. INTRODUCCIÓN

Las cubiertas de los edificios representan una de las áreas en los entornos urbanos con mayor superficie disponible que puede ser aprovechada para la instalación de paneles solares. El objetivo de este trabajo es la implementación de un estudio para evaluar el potencial solar, térmico y fotovoltaico, de las cubiertas de los edificios en el municipio de Alpedrete, aprovechando la amplia capacidad de análisis que han demostrado tener los Sistemas de Información Geográfica (SIG).

Este estudio forma parte del proyecto *gSolarRoof* dirigido a la evaluación de la capacidad de los diferentes entornos urbanos para incorporar el uso de la energía solar. El proyecto ha sido desarrollado por el grupo de Tecnologías de la Información Geográfica y Energías Renovables del CIEMAT, en colaboración con Escuela Técnica Superior de Ingeniería y Diseño Industrial (Universidad Politécnica de Madrid).

El análisis del potencial solar del municipio se realiza mediante la aplicación de un modelo geográfico desarrollado con el software ArcGIS¹, con el que se valoran cuáles son los mejores emplazamientos para la instalación de los sistemas solares y se realiza una aproximación sobre la energía producida.

En este trabajo se incluye la evaluación de 4.053 edificios de diferentes usos, tomando como unidad de análisis la parcela catastral y distribuidos en la totalidad del término municipal que ocupa una superficie de 12'66 km². La información necesaria ha sido obtenida de bases de datos geográficas estándares disponibles en diferentes organismos oficiales. El estudio está basado en el levantamiento de un modelo tridimensional de los edificios, con una resolución de 1m, generado a partir de la nube de puntos LIDAR² (Light Detection and Ranging) suministrada por el Instituto Geográfico Nacional.

¹ ArcGIS es un software desarrollado por ESRI en el sector de los Sistemas de Información Geográfica. Dispone de herramientas y aplicaciones para la captura y tratamiento de los datos, análisis de la información y la publicación e impresión de los mapas.

² LIDAR (Light Detection and Ranging) es una tecnología de teledetección óptica que utiliza un escáner láser aerotransportado para muestrear el terreno. El sistema realiza una barrido de la superficie, determina la altura y posición de cualquier elemento que localiza (edificios, árboles e infraestructuras) y registra los datos obtenido formando una nube de puntos.

Además de evaluar el municipio de Alpedrete en su conjunto, este estudio también se ha centrado en las posibilidades que ofrecen los edificios municipales. Se han seleccionado como muestra varios edificios para llevar a cabo un análisis más detallado del potencial fotovoltaico mediante el software PVsyst³ de simulación de instalaciones fotovoltaicas. En el proyecto se han analizado diferentes configuraciones para instalaciones de módulos fotovoltaicos y seleccionado la mejor solución posible.

³ El software PVsyst es una herramienta desarrollada para el diseño de instalaciones fotovoltaicas en edificios. Permite dimensionar el tamaño del sistema mediante la simulación de las diferentes configuraciones posibles para una instalación, evaluar los resultados e identificar la mejor distribución en cada caso.

2. OBJETO DE ESTUDIO

2.1. El municipio de Alpedrete

Alpedrete es un municipio situado en el noroeste de la Comunidad de Madrid, en las estribaciones del Valle de Guadarrama a 47 km de la capital. Tiene una superficie de 12'66 km² y se localiza a latitud 40° 39' 30" Norte y longitud 4° 1' 56" Oeste.

El municipio, asentado sobre rocas graníticas, tiene una topografía llana, rodeada por zonas elevadas, que va descendiendo suavemente hacia el oeste, siendo la altitud media del núcleo urbano de 919 m. El paisaje está dominado por antiguas dehesas de uso fundamentalmente ganadero que alternan hacia el este con las características canteras en su mayoría ya abandonadas. Las zonas urbanizadas, objeto de este estudio, ocupan una superficie de aproximadamente 4'86 km² estando formadas por los núcleos de Alpedrete, Valdencina y Los Negrales - Los Llanos.

La actividad económica ha evolucionado de las formas más tradicionales y la explotación de canteras de piedra hacia el sector servicios. Se trata de un municipio fundamentalmente residencial donde la población aumenta durante los meses de verano. Sin embargo, la población casi se ha triplicado en los últimos veinte años, multiplicándose con ello el número de residencias permanentes. El municipio cuenta con 14.417 habitantes (INE, 2016).

Mapa 1. Delimitación de la zona de estudio.

Al analizar las distintas áreas del municipio, como en cualquier configuración de un entorno urbano, se puede observar que las zonas que podría presentar un mayor aprovechamiento de los tejados para la instalación de sistemas solares son las áreas industriales, centros educativos y equipamientos deportivos o de ocio. Estos edificios con grandes superficies de tejados representan un 15% de la zona urbanizada que, dominada principalmente por la presencia de viviendas unifamiliares, constituye un tejido urbano en su mayor parte de media y baja densidad con una ocupación del suelo por edificios inferior al 50%.

Mapa 2. Usos y cobertura del suelo. Municipio de Alpedrete (Fuente: Urban Atlas, 2012).

2.2. Los edificios municipales

Alpedrete cuenta con 25 edificios de titularidad municipal que abarcan un importante abanico de servicios públicos que incluyen actividades culturales y deportivas, servicios educativos, sanitarios, asistenciales, seguridad y administración. Han sido seleccionados los siguientes edificios para realizar un estudio más detallado del potencial fotovoltaico:

- Polideportivo Municipal.

- Centro Cultural Asunción Balaguer.
- Colegio Clara Campoamor.
- Colegio Santa Quiteria.
- Colegio El Peralejo.
- Colegio Los Negrales⁴.

Figura 1. Edificios municipales con estudio de detalle.

⁴ Todos los colegios incluidos en el proyecto son centros públicos de enseñanza infantil y primaria.

3. FUENTES DE DATOS

Para llevar a cabo cualquier estudio, el primer paso es definir la información requerida para realizar el análisis. El modelo *gSolarRoof* (Martín et al., 2016) se caracteriza por alimentarse de una base de datos cuyas capas y tablas se obtienen principalmente a partir de la recopilación de información disponible en diferentes bases de datos geográficas y cartográficas de acceso libre. En la revisión de las fuentes de datos disponible se han recopilado las siguientes capas de información:

- Nube de puntos LIDAR: Los ficheros de nube de puntos son indispensables para realizar el análisis y a partir de ellos se creará el levantamiento tridimensional del municipio. Corresponden al vuelo LIDAR del Plan Nacional de Ortofotografía Aérea (PNOA) y son proporcionados por el Instituto Geográfico Nacional (IGN). Los archivos están formados por hojas de 2x2 km con una densidad media de 0,5 puntos/m². Año 2010.
- Fotografías aéreas: Para disponer de una visión aérea del municipio analizado hemos consultado imágenes procedentes de diferentes servicios como las ortofotos del PNOA disponibles en el IGN y la Infraestructura de Datos Espaciales de la Comunidad de Madrid (IDEM). Las ortofotos se utilizan como guía para delimitar el área de estudio y realizar una revisión de los edificios durante la preparación de los datos. Años 2009 a 2014.
- Datos de temperaturas mensuales: La Agencia Estatal de Meteorología (AEMET) facilita series de datos e información climatológica general de sus estaciones meteorológicas.
- Datos de la posición del Sol: El servicio web Solar Energy Services for Professionals (SoDa) proporciona enlace a diferentes recursos relacionados con la radiación solar. Uno de los servicios disponible es Solar Geometry 2 (SG-2), biblioteca para el cálculo de la posición del Sol, que se utiliza para establecer las zonas sombreadas de los tejados. Este portal web ofrece datos de la posición solar para una zona determinada, seleccionando la fecha y un intervalo de tiempo.
- Datos de radiación solar: La base de datos Photovoltaic Geographical Information System (PVGIS) del Instituto de Energía y Transporte de la Comisión Europea permite consultar datos de radiación solar y diferentes parámetros climáticos. Su base de datos nos permitirá ajustar los parámetros necesarios en la determinación de la radiación solar.

- Distribución de los edificios: Es necesario incluir en el modelo una delimitación de los edificios y la situación de los mismos. La Dirección General de Catastro ofrece un servicio de consulta con datos cartográficos en formato vectorial del catastro rústico y urbano. Están disponibles datos como las referencias catastrales, la delimitación de edificios y los diferentes elementos constructivos presentes en cada parcela, además de información pública asociada a las parcelas catastrales como los usos de los edificios.
- *Límites administrativos:* La delimitación del municipio, identificación y distribución de los núcleos urbanos se pueden consultar en el IGN y la IDEM.
- *Situación de los edificios protegidos y edificios municipales:* Datos procedentes del Ayuntamiento y del Plan General de Ordenación Urbana del municipio de Alpedrete.
- Planos de los edificios municipales: En el estudio detallado del potencial fotovoltaico es necesario un conocimiento más preciso de los edificios, en particular las dimensiones y forma de los tejados. El Ayuntamiento dispone de los planos de planta y alzado de los proyectos de construcción de los mismos.
- Información de los edificios municipales: Datos proporcionada por el Ayuntamiento que incluye las actividades desarrolladas en cada edificio, consumo mensual de electricidad, facturación, potencia y tarifa eléctrica contratadas.

Figura 2. Muestra de la nube de puntos LIDAR del municipio de Alpedrete.

4. METODOLOGÍA

El estudio del potencial solar se ha desarrollado en tres fases que incluyen: el tratamiento previo de la información, un análisis geográfico del municipio y finalmente un análisis más detallado de una selección de edificios municipales.

Figura 3. Principales fases de la metodología.

4.1. Procesado de la información

La estimación del potencial solar requiere de un detallado análisis de información espacial procedente de diferentes fuentes de datos que debe ser revisada para llevar a cabo el posterior análisis. El tratamiento de la información consta de los siguientes pasos:

 La edición de la nube de puntos LIDAR consiste, en primer lugar, en la depuración de posibles errores y en la revisión y correcta clasificación de cada elemento relevante para el análisis (cubiertas de edificios y elementos que generen sombras).

En el proceso de depuración se elimina el ruido presente en los datos, los posibles puntos duplicados o aquellos que sean redundantes, siempre preservando la delimitación de las superficies definidas por la nube de puntos. Posteriormente se clasifica la nube de puntos, extrayendo todos aquellos elementos necesarios para el estudio (edificios, masas de vegetación y superficie del terreno).

- Edición de las tablas y capas de datos (posición del Sol, temperaturas, límites administrativos, consumo mensual de electricidad, etc.), seleccionando del conjunto de datos la información utilizada en el estudio y dotándola de un formato, estructura y georreferenciación adecuados.
- Diseño de una base de datos donde se organiza toda la información previamente tratada y necesaria para la ejecución del modelo gSolarRoof. La distribución de la base de datos permitirá relacionar los datos espaciales con sus atributos y características, ofreciendo una visión conjunta de la zona.

4.2. Análisis del potencial solar del municipio con gSolarRoof

El conjunto de datos procesados se integra en el modelo geográfico *gSolarRoof* del CIEMAT para el estudio del potencial solar (Martín et al., 2016), modificado para adaptarlo al análisis del potencial solar fotovoltaico y térmico del municipio de Alpedrete. En este modelo se establecen las variables que influirán en el emplazamiento de los paneles solares y la energía generada, considerando la estructura de la zona urbana, la radiación solar recibida en los tejados y la tipología de los edificios.

La implementación del modelo incluye las siguientes secciones:

- Levantamiento de un Modelo Digital de Superficies (MDS) de todo el entorno urbano del municipio donde se representa la distribución de los edificios. Considerando la densidad de la nube de puntos, el MDS resultante tiene un tamaño de celda de 1 m².
- 2. Análisis de la radiación solar recibida anualmente en cada punto del tejado teniendo en cuenta la diversidad de formas que pueden presentar los tejados y la distribución de los diferentes elementos situados a su alrededor. En el cálculo de la radiación solar se han utilizado la herramienta 'Radiación solar de áreas' de ArcGIS, configurando los parámetros topográficos y atmosféricos para ajustar la evolución de la radiación solar a lo largo del año.
- 3. La posición de los paneles solares sobre los tejados se basará en el análisis de la orientación e inclinación de los tejados considerando las pérdidas en la generación de energía ocasionadas por la situación de los mismos conforme a las directrices establecidas por el 'Código Técnico de la Edificación' de España.

- 4. En el diseño de instalaciones solares es importante evitar el sombreado, principalmente en las horas de mayor insolación, para aprovechar al máximo la producción de energía. El Análisis de la superficie de los tejados afectada por sombras se realiza para todo el año, teniendo en cuenta el efecto de los edificios adyacentes, zonas arboladas, o cualquier otro elemento sombreador del entorno circundante.
- Cálculo de la superficie disponible en los tejados para la instalación de sistemas solares y selección de los emplazamientos más adecuados, considerando las diferentes tipologías de tejados (planos e inclinados).
- Estimación de la potencia disponible y la producción de energía eléctrica anual con módulos fotovoltaicos del tipo 'Silicio Multicristalino' para todos los edificios del municipio.
- 7. Estimación de la producción de energía anual para agua caliente sanitaria (ACS) con colectores solares términos de 'Placa Plana' para los edificios de viviendas.
- 8. Cálculo de las emisiones a la atmósfera de CO₂ evitables con la energía solar generada y asignación a cada edificio del municipio de los resultados obtenidos en el modelo teniendo en cuenta su distribución según el parcelario catastral.

Figura 4. Principales factores analizados en el estudio del potencial solar.

4.3. Análisis del potencial fotovoltaico de los edificios municipales

Para los edificios municipales seleccionados se establecen una serie de variables en el software PVsyst con las que se simulan diferentes tamaños y configuraciones de instalaciones fotovoltaicas. En las pruebas realizadas se consideran diversos perfiles de producción de energía eléctrica, teniendo en cuenta varios tipos de módulos y en función de la radiación solar en la zona.

Basándose en lo establecido en el Real Decreto 900/2015, por el que se regulan las condiciones administrativas, técnicas y económicas de las modalidades de suministro de energía eléctrica con autoconsumo y de producción con autoconsumo, la potencia instalada para autoconsumo debe ser igual o inferior a la contratada. Los edificios analizados tienen una potencia contratada entre 15 y 80 kW, por lo que se han establecido estos valores como potencia de referencia.

El estudio no tiene en cuenta la superficie total de tejado disponible en la que puedan llegar a instalarse módulos fotovoltaicos, sino solamente la superficie necesaria para la potencia previamente fijada de acuerdo al mencionado RD.

El análisis del potencial fotovoltaico con PVsyst consistirá en:

- Estimación de las curvas de consumo horario a partir de los datos mensuales de consumo de electricidad. Se establece un consumo aproximado para cada edificio diferenciando entre días laborables o festivos y tomando como base las franjas horarias 'punta y valle'. La asignación de los valores se realiza atendiendo a factores como el horario, las actividades desarrolladas, el aforo y el uso de los diferentes edificios a lo largo del año.
- 2. Establecer la ubicación de los edificios y determinar la radiación solar incidente en la zona para lo que se incorporará la base de datos de PVGIS.
- 3. Diseño de los edificios en 3D tomando como base los planos del Ayuntamiento y disposición de los módulos en los tejados. También se configuran los elementos circundantes que puedan proyectar sombras como la presencia de árboles para calcular el porcentaje de pérdidas por sombras que tiene la configuración elegida.
- 4. Finalizada la modelización del edificio se define su orientación e inclinación de las diferentes secciones que forman su tejado. Estos factores son requeridos para establecer las pérdidas de energía.

- 5. Diseño del sistema para establecer la distribución de los módulos en el tejado (serie-paralelo). Una vez conocida la demanda y elegido el tipo de módulo se calcula la configuración de la instalación atendiendo a la elección del inversor y finalmente se establecen los puntos de conexión.
- 6. Ajustar la producción de energía eléctrica al consumo con la máxima rentabilidad comparando los resultados obtenidos con diversas distribuciones de la instalación para obtener la configuración más óptima. Se determina la capacidad fotovoltaica de la instalación estableciendo el número de módulos necesarios, la energía que puede llegar a generarse y cuantificar la cobertura de la demanda de electricidad.

Figura 5. Configuración de PVsyst con los parámetros de las instalaciones fotovoltaicas.

5. RESULTADOS

5.1. Término municipal

Una vez realizado el análisis geográfico se han obtenido datos relativos a las 4.053 parcelas catastrales pertenecientes al municipio de Alpedrete, en los que se incluyen 25 edificios municipales (Anexo I). Del número total de edificios analizados con *gSolarRoof* sólo un 8% no dispone de superficie potencial de tejados para la instalación de módulos fotovoltaicos. Esta situación es debida a una inadecuada inclinación u orientación de los mismos, a no recibir suficiente radiación o a estar afectados por sombras. Asimismo, un 3% tampoco presentan superficie disponible donde situar colectores solares térmicos para agua caliente sanitaria (ACS).

Módulos Fotovoltaicos (Silicio Multicristalino)		
Número de edificios analizados ⁵	4.053		
Superficie total construida	698.677 m²		
Número edificios con superficie disponible	3.656		
Superficie disponible	186.903 m²		
Potencia disponible	23 MWp		
Energía disponible	33 GWh		
Emisiones evitadas de CO ₂ ⁶	21.417 T		
Colectores Solares Térmicos (Placa Plana)			
Número de edificios de viviendas analizados	3.746		
Superficie total construida	573.895 m²		
Número edificios con superficie disponible	3.412		
Superficie disponible	135.214 m²		
Energía disponible	100 GWh		
Emisiones evitadas de CO ₂ ⁷	20.400 T		

Tabla 1. Síntesis de resultados generales para el municipio de Alpedrete.

⁵ En el municipio se han identificado 93 edificios sin información suficiente para realizar el análisis.

⁶ Los valores obtenidos según los factores de emisiones de CO₂ para electricidad correspondiente a electricidad convencional en la Península (IDAE, 2014).

⁷ Los valores obtenidos según los factores de emisiones de CO₂ para energía térmica correspondientes a gas natural (IDAE, 2014).

La morfología de los tejados influye en la energía que puede llegar a generarse. Al tratarse de una zona urbana con numerosas viviendas unifamiliares rodeadas de vegetación, la presencia de edificios con altas tasas de generación de energía, formados por grandes superficies homogéneas y libres para la instalación de paneles solares es limitada.

Gráfico 1. Distribución de edificios en función de la superficie de tejados disponible para energía fotovoltaica.

Gráfico 2. Distribución de edificios en función de la superficie de tejados disponible para agua caliente sanitaria en viviendas.

Los edificios disponen de una superficie de tejados suficiente para considerar el aprovechamiento de este espacio para la generación de energía, siempre que la

estructura de los tejados sea adecuada para soportar la instalación de estos sistemas. Hay que tener en cuenta que las características del estudio no entran en el detalle de cada uno de los edificios, por lo que no se consideran (por carecer de ese nivel de precisión) las peculiaridades de cada cubierta ni sus materiales.

5.2. Edificios municipales

Como hemos apuntado, el estudio en detalle de alguno de los edificios municipales se realiza de forma independiente con el software PVsyst. Una de las primeras consideraciones que hay que tener en cuenta es el diferente perfil de demanda que se puede observar entre estos edificios y las viviendas, así como el diferente comportamiento de los primeros a lo largo de la semana y a lo largo del año, tal y como puede apreciarse en los gráficos siguientes.

Gráfico 4. Comparativa de la demanda de los edificios municipales en el mes de junio.

En base a lo anterior, podemos deducir el nivel de satisfacción de la demanda que se podría dar con energía solar para diferentes escenarios, tal y como podemos apreciar en el caso del Centro Cultural Asunción Balaguer en los gráficos siguientes. La producción de energía representada supone una cobertura de la demanda del 15% en el mes de enero, llegando al 45% en el mes de septiembre.

Gráfico 5. Cobertura de la demanda del Centro Cultural Asunción Balaguer

Los resultados para los edificios analizados pueden ser observados en la tabla siguiente:

Edificios	Potencia instalada (kWp)	Energía producida (MWh/año)	Energía consumida (MWh/año)	Cobertura de la demanda (%)
Polideportivo Municipal	48'1	81'25	346'75	23'4
Centro Cultural	47	78'53	202'73	38'7
Colegio Clara Campoamor	36'3	62	101'36	61'1
Colegio Santa Quiteria	42'1	70	106'48	65'7
Colegio El Peralejo	36'3	60'67	92'73	65'4
Colegio Los Negrales	13'2	22'45	25'55	87'8

Tabla 2. Tabla resumen de los resultados obtenidos con PVsyst.

Como podemos apreciar en la tabla, la cobertura de la demanda en los colegios es muy superior a la del polideportivo y el centro cultural. Esto se debe a varios factores como pueden ser la localización de los edificios respecto al resto del casco urbano y del arbolado (problemas derivados de las sombras), la relación de superficie (mayor proporcionalmente en los colegios) y el perfil de uso, más intenso y con un carácter más nocturno en el caso del polideportivo y del centro cultural. Con esas condiciones, y siempre de acuerdo a las limitaciones del RD, podemos observar como el más desfavorecido es el polideportivo municipal, del cual no obstante se podría cubrir más del 20% de sus necesidades eléctricas sin ningún tipo de problema. En el caso de los colegios se va a superar el 60% (con los condicionantes apuntados) llegando en el caso del Colegio de Los Negrales a cerca del 90% de la demanda estimada.

5.3. Presentación de los resultados

En este estudio se asigna un papel importante a la representación y la difusión de la información. Para la presentación de los resultados, se ha creado un geoportal⁸ con el que los usuarios pueden visualizar los datos de los edificios, realizar consultas y compartir la información de una forma sencilla.

Entre las diferentes plataformas donde alojar los datos geográficos en internet, hemos seleccionado ArcGIS Online de ESRI para la publicación de los resultados en el <u>geoportal *gSolarRoof*</u>. Esta plataforma nos permite cargar información en la nube y generar mapas online para la visualización de los resultados obtenidos en el análisis.

Figura 6. Geoportal *gSolarRoof* para el municipio de Alpedrete.

⁸ Se trata de un visor cartográfico alojado en una página web de internet que nos permite consultar a través de un mapa los resultados del proyecto. Puede ser visualizado pinchando <u>aquí</u>.

En el desarrollo del geoportal se ha diseñado una interfaz que dispone de una serie de botones, desplegables y ventanas emergentes que permiten de forma cómoda acceder a la información (Para una información en detalle de su funcionamiento ver el Anexo VIII).

Las capas de información incluidas, se han representado mediante unos rangos de valores mostrados por su correspondiente escala de color que sirven para conocer las características más importantes de cada edificio, considerando como unidad de representación la parcela catastral. Estas capas de datos para el municipio de Alpedrete son las siguientes:

- Límite del término municipal de Alpedrete.
- Límites de los núcleos urbanos de Alpedrete.
- Distribución de edificios según las parcelas catastrales.
- Fotovoltaica: Superficie disponible (m²).
- Fotovoltaica: Potencia disponible (kWp).
- Fotovoltaica: Energía anual disponible (MWh).
- Agua caliente sanitaria: Superficie disponible (m²).
- Agua caliente sanitaria: Energía anual disponible (MWh).
- Radiación solar anual (Wh/m²).

Además del <u>geoportal *qSolarRoof*</u>, para consultar los datos obtenidos del municipio de Alpedrete, se ha elaborado un Atlas con todos los resultados (Ver Anexo IX).

6. CONCLUSIONES

La energía solar está jugando un papel preponderante en el cambio de nuestro modelo energético gracias a su versatilidad, sencillez, fiabilidad y economía. El papel de los ciudadanos en este cambio de modelo es fundamental. En este contexto, el rol de los municipios, tanto como grandes consumidores de energía, como canalizadores de las inquietudes de sus habitantes, es fundamental. Numerosos ayuntamientos están dando pasos decididos, implementando políticas de ahorro y eficiencia y ayudando a sus vecinos en la promoción de las energías renovables y la movilidad sostenible.

El CIEMAT, como centro público de investigación, es sensible a estas demandas y lleva colaborando activamente desde hace muchos años en la promoción y desarrollo tecnológico de las energías renovables. En el ámbito concreto del estudio que nos ocupa, el grupo de Tecnologías de la Información Geográfica y Energías Renovables (gTIGER), adscrito a la División de Energías Renovables del CIEMAT, ha desarrollado un modelo geográfico que permite analizar con rigor el potencial solar de los tejados de amplias áreas (polígonos industriales, zonas comerciales y de servicios, urbanizaciones, barrios o municipios).

El modelo *gSolarRoof*, estima a partir de diferentes fuentes de datos, la superficie de tejado disponible para aprovechamiento de la energía solar, valorando la potencia de las instalaciones y la energía que podría ser generada a lo largo del año.

Este modelo ha sido adaptado al municipio de Alpedrete arrojando unos resultados que cuantifican las posibilidades de generación solar muy próximas a las necesidades de la población, aplicando un criterio de máxima cobertura. En el caso de los edificios municipales, el análisis detallado utilizando una herramienta "ad hoc" arroja unos resultados variables pero en cualquier caso nada desdeñables. Todos estos datos, tomados con el rigor necesario del que ha partido el estudio, son una herramienta excepcional tanto para los ciudadanos como para las autoridades municipales, en su papel protagonista en la mejora de la calidad ambiental y de vida del municipio y de sus habitantes.

7. BIBLIOGRAFÍA

Ayuntamiento de Alpedrete, 2013. *Plan General de Ordenación Urbana del Municipio de Alpedrete (Madrid)*. Tomo IV: Catálogo de bienes y espacios protegidos.

Comisión Europea. Centro Común de Investigación, Instituto de Energía y Transporte, 2012. *Sistema de Información Geográfica Fotovoltaica - Mapa Interactivo (PVGIS).* Disponible en: http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php?lang=es&map= europe. [Consulta: 23 de febrero de 2018].

Comunidad de Madrid, 2017. *Geoportal de la Infraestructura de Datos Espaciales de la Comunidad de Madrid (IDEM)*. Disponible en: http://www.madrid.org/cartografia /idem/html/index.htm. [Consulta: 23 de febrero de 2018].

Comunidad de Madrid. Instituto de Estadística, 2017. *ALMUDENA, Bando de Datos Municipal y Zonal*. Disponible en: http://www.madrid.org/desvan/Inicio. icm?enlace=almudena. [Consulta: 23 de febrero de 2018].

Instituto para la Diversificación y Ahorro de la Energía (IDAE), 2009. *Instalaciones de Energía Solar Térmica. Pliego de Condiciones Técnicas de Instalaciones de Baja Temperatura*. Madrid: IDAE.

Instituto para la Diversificación y Ahorro de la Energía (IDAE), Ministerio de Industria, Energía y Turismo y Ministerio de Fomento, 2014. *Factores de emisiones de CO*₂ y coeficientes de paso a energía primaria de diferentes fuentes de energía final consumidas en el sector de edificios en España. Madrid: IDAE.

Instituto Nacional de Estadística, 2016. *Demográfica y población*. Disponible en: http://www.ine.es/. [Consulta: 23 de febrero de 2018].

Martín A.M., Domínguez J. y Amador J., 2015. Applying LIDAR datasets and GIS based model to evaluate solar potential over roofs: a review. *AIMS Energy*, 3, 3, pp. 326-343.

Martín A.M., Domínguez J., Amador J., 2016. Desarrollo de un modelo geográfico para la evaluación del potencial fotovoltaico en entornos urbanos. *GeoFocus*, 18, pp. 147-167.

Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente. Agencia Estatal de Meteorología (AEMET), 2017. *AEMET OpenData*. Disponible en: http://www.aemet.es /es/datos_abiertos/AEMET_OpenData. [Consulta: 23 de febrero de 2018].

Ministerio de Fomento, 2009, 2017. *Código Técnico de la Edificación. Documento Básico HE: Ahorro de energía.* Madrid: Ministerio de Fomento.

Ministerio de Fomento. Instituto Geográfico Nacional (IGN), 2017. *Centro de descargas del Centro Nacional de Información Geográfica*. Disponible en: http:// centrodedescargas.cnig.es/CentroDescargas/index.jsp. [Consulta: 23 de febrero de 2018].

Ministerio de Hacienda y Función Pública. Secretaría de Estado de Hacienda. Dirección General del Catastro, 2017. *Portal de la Dirección General del Catastro*. Disponible en: http://www.catastro.meh.es/. [Consulta: 23 de febrero de 2018].

Ministerio de Industria, Energía y Turismo. Real Decreto 900/2015, de 9 de octubre, por el que se regulan las condiciones administrativas, técnicas y económicas de las modalidades de suministro de energía eléctrica con autoconsumo y de producción con autoconsumo. *Boletín Oficial del Estado*, 10 de octubre de 2015 (243), pp. 94874-94917.

MINES ParisTech. SoDa: Solar radiation data, 2017. *Solar Geometry 2 (SG2)*. Disponible en: http://www.soda-pro.com/web-services/astronomy/solar-geometry-2. [Consulta: 23 de febrero de 2018].

Unión Europea. Agencia Europea de Medio Ambiente, 2012. *Urban Atlas*. Disponible en: https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoringservice -urban-atlas. [Consulta: 23 de febrero de 2018].

Verso A., Martín A.M., Amador, J., Domínguez, J., 2015. GIS-based method to evaluate the photovoltaic potential in the urban environments: The particular case of Miraflores de la Sierra. *Solar Energy*, 117, pp. 236-245.

Wiginton L.K., Nguyen H.T. y Pearce J.M., 2010. Quantifying rooftop solar photovoltaic potential for regional renewable energy policy. *Computers, Environment and Urban Systems*, 34, pp. 345-357.

ÍNDICE DE FIGURAS

Figura 1. Edificios municipales con estudio de detalle	9
Figura 2. Muestra de la nube de puntos LIDAR del municipio de Alpedrete	. 11
Figura 3. Principales fases de la metodología	. 12
Figura 4. Principales factores analizados en el estudio del potencial solar	. 14
Figura 5. Configuración de PVsyst con los parámetros de las instalaciones fotovoltai	cas.
	. 16
Figura 6. Geoportal gSolarRoof para el municipio de Alpedrete.	. 22
Figura 7. Ventana emergente para los edificios	. 59
Figura 8. Herramienta 'Buscador de direcciones'.	. 60
Figura 9. Resultado de la herramienta 'Buscador de direcciones'	. 60
Figura 10. Herramienta 'Zoom'	. 61
Figura 11. Herramienta 'Extensión predeterminada'	. 62
Figura 12. Herramienta 'Buscar mi ubicación'	. 62
Figura 13. Herramienta 'Extensión navegar'	. 63
Figura 14. Herramienta 'Vista general del mapa'	. 63
Figura 15. Opción expandir la imagen de la vista general	. 64
Figura 16. Herramienta 'Pantalla completa'	. 64
Figura 17. Herramienta 'Galería de mapas'	. 65
Figura 18. Selección de mapas base	. 65
Figura 19. Herramienta 'Medición'	. 66
Figura 20. Opción 'Medición de área'	. 66
Figura 21. Opción 'Medición de distancia'	. 67
Figura 22. Opción 'Medición de ubicación'	. 67
Figura 23. Herramienta 'Vista dividida'	. 68
Figura 24. Selección de capas a visualizar en la vista dividida	. 68
Figura 25. Resultado de la herramienta 'Vista dividida'	. 69
Figura 26. Herramienta 'Imprimir'	. 69
Figura 27. Ventana para la impresión del mapa	. 70
Figura 28. Opciones avanzadas para impresión del mapa	. 70
Figura 29. Finalizar el proceso de impresión del mapa	. 71
Figura 30. Botón 'Ayuda'	. 71
Figura 31. Botón 'Leyenda'	. 72
Figura 32. Botón 'Lista de capas'	. 72
Figura 33. Opciones del menú desplegable en el listado de capas	. 73
Figura 34. Menú desplegable de cada capa de datos	. 73

ÍNDICE DE TABLAS

Tabla 1. Síntesis de resultados generales para el municipio de Alpedrete	. 17
Tabla 2. Tabla resumen de los resultados obtenidos con PVsyst	. 21
Tabla 3. Síntesis de resultados obtenidos con el modelo gSolarRoof de los edifi	cios
municipales	. 30

ÍNDICE DE GRÁFICOS

Gráfico 1. Distribución de edificios en función de la superficie de tejados disponible
para energía fotovoltaica
Gráfico 2. Distribución de edificios en función de la superficie de tejados disponible
para agua caliente sanitaria en viviendas18
Gráfico 3. Comparativa de la demanda de los edificios municipales en el mes de enero.
Gráfico 4. Comparativa de la demanda de los edificios municipales en el mes de junio.
Gráfico 5. Cobertura de la demanda del Centro Cultural Asunción Balaguer

ÍNDICE DE MAPAS

Mapa 1. Delimitación de la zona de estudio7
Mapa 2. Usos y cobertura del suelo. Municipio de Alpedrete (Fuente: Urban Atlas) 8
Mapa 3. Fotovoltaica: Superficie disponible. Hoja 1
Mapa 4. Fotovoltaica: Superficie disponible. Hoja 2
Mapa 5. Fotovoltaica: Superficie disponible. Hoja 3
Mapa 6. Fotovoltaica: Superficie disponible. Hoja 4
Mapa 7. Fotovoltaica: Superficie disponible. Hoja 5
Mapa 8. Fotovoltaica: Potencia disponible (Silicio Multicristalino). Hoja 1 80
Mapa 9. Fotovoltaica: Potencia disponible (Silicio Multicristalino). Hoja 2 81
Mapa 10. Fotovoltaica: Potencia disponible (Silicio Multicristalino). Hoja 3 82
Mapa 11. Fotovoltaica: Potencia disponible (Silicio Multicristalino). Hoja 4
Mapa 12. Fotovoltaica: Potencia disponible (Silicio Multicristalino). Hoja 5 84
Mapa 13. Fotovoltaica: Energía anual disponible (Silicio Multicristalino). Hoja 1 85
Mapa 14. Fotovoltaica: Energía anual disponible (Silicio Multicristalino). Hoja 2 86
Mapa 15. Fotovoltaica: Energía anual disponible (Silicio Multicristalino). Hoja 3 87
Mapa 16. Fotovoltaica: Energía anual disponible (Silicio Multicristalino). Hoja 4 88
Mapa 17. Fotovoltaica: Energía anual disponible (Silicio Multicristalino). Hoja 5 89

Mapa 18. Agua caliente sanitaria (Viviendas): Superficie disponible. Hoja 1
Mapa 19. Agua caliente sanitaria (Viviendas): Superficie disponible. Hoja 2
Mapa 20. Agua caliente sanitaria (Viviendas): Superficie disponible. Hoja 3
Mapa 21. Agua caliente sanitaria (Viviendas): Superficie disponible. Hoja 4
Mapa 22. Agua caliente sanitaria (Viviendas): Superficie disponible. Hoja 5
Mapa 23. Agua caliente sanitaria (Viviendas): Energía anual disponible (Placa Plana).
Hoja 1
Mapa 24. Agua caliente sanitaria (Viviendas): Energía anual disponible (Placa Plana).
Ноја 2 96
Mapa 25. Agua caliente sanitaria (Viviendas): Energía anual disponible (Placa Plana).
Ноја 3 97
Mapa 26. Agua caliente sanitaria (Viviendas): Energía anual disponible (Placa Plana).
Hoja 4
Mapa 27. Agua caliente sanitaria (Viviendas): Energía anual disponible (Placa Plana).
Ноја 5 99

ANEXO I. RESULTADOS EDIFICIOS MUNICIPALES (gSolarRoof)

Nombre	Dirección	Superficie disponible (m ²)	Potencia disponible (kWp)	Energía anual disponible (MWh)	Emisiones de CO ₂ evitables (T)	Observaciones
Ayuntamiento	Plaza de la Villa 1	-	-	-	-	Edificio protegido
Oficina Ayuntamiento	Calle Doctor Varela 8	95	10'79	15'01	9'74	
Protección Civil	Plaza de la Constitución	55	6'04	8'55	5'55	
Antiguas Escuelas	Plaza de la Constitución	0	0	0	0	
Edificio Polivalente	Plaza de la Constitución	116	10'56	14'53	9'43	
Centro de Mayores Los Canteros de Alpedrete	Plaza de la Constitución s/n	228	25'52	36'52	23'70	
Punto Limpio	Calle de la Pasada	19	1'97	2'74	1'78	
Almacén – Naves	Calle Labrantes 4	202	19'09	26'14	16'96	
Colegio Clara Campoamor	Calle Campo de Fútbol 4	1.071	158'03	231'78	150'43	
Colegio Santa Quiteria	Calle Santa Quiteria 45	1.114	123'52	177'28	115'05	
Colegio Los Negrales	Calle San Pablo 1-17	333	41'56	59'87	38'86	
Colegio El Peralejo	Calle Santa Quiteria 28	1.222	158'77	225'48	146'34	
Escuela Infantil El Nogal	Calle Ramón y Cajal s/n	582	47'59	67'49	43'80	
Taller garaje P. Educación Vial	Calle Santa Quiteria 36	29	4'03	5'39	3'50	
Servicios Sociales	Calle del Pozo Nuevo 6	89	9'69	14'09	9'14	
Centro de Mayores Los Negrales	Calle Santiago Rodríguez Conde 14	76	8'16	11'93	7'74	
Policía Local	Calle de la Pozuela 7	-	-	-	-	Edificio protegido
Edificio de Juventud	Calle Félix Díaz 3	107	8'39	11'53	7'48	
Polideportivo Municipal	Calle Campo de Fútbol s/n	1.513	158'88	227'89	147'90	
Polideportivo Los Negrales	Calle Santa Emilia 18	1.132	88'77	125'77	81'62	
Centro Cultural Asunción Balaguer	Plaza de Francisco Rabal 2	415	55'90	81'78	53'08	
Centro de Salud	Plaza de la Tauromaquia s/n	839	69'84	97'75	63'44	
Oficina Judicial	Calle de la Pozuela 7	69	9'43	13'25	8'60	
Antiguas Escuelas Los Negrales	Calle Raso	37	5'18	7'36	4'78	
Tanatorio	Calle Santa Quiteria 43	62	9'29	13'06	8'48	

Tabla 3. Síntesis de resultados obtenidos con el modelo gSolarRoof de los edificios municipales.

ANEXO II. POLIDEPORTIVO MUNICIPAL

PVSYST V6.64				23/11/17	Página 1/5			
Sistema Cone	ectado a la Red	: Paráme	tros de la simula	ción				
Proyecto : POLIDER	PORTIVO Alpedret	e						
Lugar geográfico	Alpedrete		País	Espana				
Ubicación	Latitud	40.65° N	Longitud	-4.02° W				
Hora definido como	Hora Legal Albedo	Huso hor. U 0.20	I Altitud	900 m				
Datos climatológicos:	Alpedrete	PVGIS CM SAF, satélite 1998-2011 - Síntesis						
Variante de simulación : POLI	DEPORTIVO_ALP	EDRETE						
F	Fecha de simulación	23/11/17 01	h58					
Parámetros de la simulación								
Orientación Plano Receptor	Inclinación	35°	Acimut	6°				
Modelos empleados	Transposición	Perez	Difuso	Perez, Me	teonorm			
Perfil obstáculos Sin	perfil de obstáculos							
Sombras cercanas	Sombreado lineal							
Características generadores FV (2 Módulo FV Original PVsyst database Sub-generador "Sub-generador #1"	Tipo de generador Si-poly Modelo Fabricante	definido) CS6U - 325 Canadian S 16 módulos	P olar Inc. En paralelo	4 cadenas				
N° total de módulos FV Potencia global generador Caract. funcionamiento del generador	N° módulos Nominal (STC) (50°C) V mpp	64 20.80 kWp 529 V	Pnom unitaria En cond. funciona. I mpp	325 Wp 18.65 kWj 35 A	o (50°C)			
Sub-generador "Sub-generador #2" Número de módulos FV N° total de módulos FV Potencia global generador Caract. funcionamiento del generador	En serie N° módulos Nominal (STC) (50°C) V mpp	14 módulos 84 27.30 kWp 463 V	En paralelo Pnom unitaria En cond. funciona. I mpp	6 cadenas 325 Wp 24.48 kWj 53 A	с р (50°С)			
Total Potencia global generadores	Nominal (STC) Superficie módulos	48 kWp 288 m²	Total Superf. célula	148 módu 259 m²	los			
Sub-generador "Sub-generador #1" Original PVsyst database Características Banco de inversores	': Inversor Modelo Fabricante Tensión Funciona. N° de inversores	Sunny Trip SMA 320-800 V 1 unidades	ower 20000TL-30 Pnom unitaria Potencia total	20.0 kWa 20 kWac	с			
Sub-generador "Sub-generador #2" Custom parameters definition Características Banco de inversores	': Inversor Modelo Fabricante Tensión Funciona.	Powador 14 Kaco new e 200-800 V	4.0 TL3 nergy Pnom unitaria Potencia total	12.5 kWa	с			
Total	N° de inversores	2 uniuaues	Potencia total	25 kWac				
		5						
Factores de pérdida Generador FV								
Factor de pérdidas térmicas	Uc (const)	20.0 W/m ² K	Uv (viento)	0.0 W/m²l	< / m/s			
Pérdida Óhmica en el Cableado Pérdida Calidad Módulo	Generador#1 Generador#2 Global	253 mOhm 148 mOhm	Fracción de Pérdidas Fracción de Pérdidas Fracción de Pérdidas Fracción de Pérdidas	1.5 % en 3 1.5 % en 3 1.5 % en 3 -0.4 %	STC STC STC			
Pérdidas Mismatch Módulos			Fracción de Pérdidas	1.0 % en l	MPP			

PVsyst Classroom License, Dpto Fisica Aplicada - Univ Polit. Madrid (FGUPM) (Spain)

Traducción sin garantía, Sólo el texto inglés está garantizado.

VSYST V6.64							23	3/11/17 Pág	gina 2/5
Sistema	Conecta	ado a la	Red: Pa	rámetros	s de la s	simulacio	ón (con	tinuación)	
Efecto de incidencia	a, perfil defir	nido por el u	Isuario (IAN	/I): User defi	ned IAM pr	rofile			
10°	20°	30°	40°	50°	60°	70°	80°	90°	
0.998	0.998	0.995	0.992	0.986	0.970	0.917	0.763	0.000	
Necesidades de lo	s usuarios	: Carga	a ilimitada (red)					
yst Classroom License, Dpto F	-isica Aplicada - Un	iv Polit. Madrid (F0	GUPM) (Spain)			Traduc	ción sin garantía,	Sólo el texto inglés es	tá garantizad

ANEXO III. CENTRO CULTURAL ASUNCIÓN BALAGUER

PVSYST V6.64											17/12/17	Página 1/7
	Siste	ma Co	onecta	ado a	la Rec	l: Par	ámet	ros de	la sin	nula	ción	
Proyecto :		Alpeo	lrete_2									
Lugar geográfic	o			AI	pedrete					País	España	
Ubicación Hora definido	como			Ho	Latitud ra Legal Albedo	40.65 Huso 0.20	° N hor. UT	-	Long Al	gitud titud	-4.02° W 900 m	
Datos climatolog	gicos:			AI	pearete	PVGI	5 CIVI 5	AF, Sale	lite 1990	-201	- Sintesis	
Variante de sir	nulació	n: C	asa Cu	Itural A	Sunció	n Bala	guer2					
			Fech	a de sin	nulación	17/12	/1/ 01h	03		V		
Parámetros de la simulación												
Orientación Pla	no Rece	ptor		Inc	linación	30°			Ac	imut	0°	
Modelos emplea	idos			Trans	posición	Perez			Di	fuso	Perez, Me	teonorm
Perfil obstáculo	S		E	Elevació	n Media	3.6°						
Sombras cercar	as		S	ombrea	do lineal							
Características Módulo FV Original PVsys Sub-generador	generad t databas 'Aguas '	ores FV Se 1''	(2 Tip Si-p	oo de ge oly Fa	e nerado Modelo bricante	defini CS6K Cana	do) (- 275P dian So	lar Inc.				
Número de módu N° total de módu Potencia global g Caract. funcionar	los FV os FV enerado niento de	r el genera	ador (50	ا N° r Nomina °C)	En serie nódulos al (STC) V mpp	19 mč 57 15.68 526 V	kWp	P En coi	En para nom uni nd. funci I	alelo taria ona. mpp	3 cadenas 275 Wp 14.08 kW 27 A	; р (50°С)
Sub-generador Número de módu N° total de módul Potencia global g Caract. funcionar	'Cuña 1 ' los FV os FV enerado niento de	r el genera	ador (50	ا N° r Nomina °C)	En serie nódulos al (STC) V mpp	19 mč 114 31.4 l 526 V	dulos Wp	P En cor	En para nom uni nd. funci I	alelo taria ona. mpp	6 cadenas 275 Wp 28.15 kW 54 A	; p (50°C)
Total Potencia	a global (generado	ores Sup	Nomina perficie r	al (STC) nódulos	47 kV 280 m	/p 1²	s	٦ uperf. ce	⊺otal élula	171 módu 250 m²	los
Inversor Custom param Características	neters de	finition	Те	Fa nsión Fi	Modelo bricante unciona.	Sunn SMA 240-8	y Tripo 00 ∨	wer 150 P	00TL-10 nom uni	taria	15.0 kWa	с
Sub-generador Sub-generador	'Aguas 'Cuña 1'	1"	1	N° de inv N° de inv	versores versores	1 unio 2 unio	lades lades	F	Potencia Potencia	total total	15.0 kWa 30 kWac	С
Total			١	۹° de inv	ersores	3		F	Potencia	total	45 kWac	
Factores de pér	dida Gei	nerador	FV									
Pérdidas por poly Factor de pérdida	/o y sucie as térmic	edad del as	genera	dor Ud	(const)	20.0	N/m²K	Fracción	de Pérd Uv (vie	iidas ento)	1.5 % 0.0 W/m²l	K / m/s
Pérdida Óhmica Pérdida Calidad I Pérdidas Mismat	en el Cal Nódulo ch Módu	oleado		Gene Gene	rador#1 rador#2 Global	331 n 166 n	nOhm nOhm	Fracción Fracción Fracción Fracción Fracción Fracción	de Pérd de Pérd de Pérd de Pérd de Pérd	lidas lidas lidas lidas lidas	1.5 % en 1.5 % en 1.5 % en -0.5 % 1.0 % en	STC STC STC
Ene Ech	Mar	Abr	May	lun	Jul	Ago	Sen	Oct	Nov	Dic	Δñο	
26751 34170	30431	18880	12534	11061	19040	9598	10308	8210	24064	1771	6 222763	<wh mth<="" td=""></wh>

PVsyst Classroom License, Dpto Fisica Aplicada - Univ Polit. Madrid (FGUPM) (Spain)

Traducción sin garantía, Sólo el texto inglés está garantizado.

PVSYST	V6.64										1	7/12/17	Página 2/
Sistema Conectado a la Red: Parámetros de la simulación (continuación)													
Efecto de	e incidenc	ia, perfi	l definide	o por el u	usuario ((IAM): U	ser defi	ned IAM	profile				
[10°	20	°	30°	40°		50°	60°	7	′0°	80°	90)°
l	0.998	0.9	98	0.995	0.992		.986	0.970	0.	917	0.763	0.0	00
lecesid	ades de le	os usua	arios :	valo	ores mer	nsuales							
Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Sep.	Oct.	Nov.	Dic.	Año	
26751	1 34170	30431	18880	12534	11061	19040	9598	10308	8210	24064	17716	222763	kWh/mth
'ower fa	actor				с	os(phi)					Phi (0.0°	
/st Classroor	m License, Dpto	Fisica Aplic	ada - Univ Po	olit. Madrid (F	GUPM) (Spai	n)				Traducció	on sin garantia	, Sólo el texto	o inglés está garantiz

ANEXO IV. COLEGIO CLARA CAMPOAMOR

PVSYST V6.64										18/12/17	Página 1/4
	Sistema	Conecta	ido a la	Red	: Par	áme	tros	de la s	imula	ción	
Proyecto :	cc	LEGIO CA		OR_e	estaci	ón2					
Lugar geográfic	0		Ма	drid					País	España	
Ubicación Hora definido	como		La Hora L	titud egal	40.45 Huso	° N hor. L	т	Lo	ongitud Altitud	-3.72° W 665 m	
Datos climatoló	gicos:		Alped	rete	PVG	SCM	SAF,	satélite 19	98-201	1 - Síntesis	
Variante de sin	nulación :	variante	1 campoa	mor	_RD			- 1			
		Fech	a de simula	ción	18/12	/17 23	h44				
Parámetros de l	a simulación						-1				
Orientación Pla	no Receptor		Inclina	ción	30°			Υ.	Acimut	8°	
Modelos emplea	dos		Transposi	ición	Perez				Difuso	Perez, Me	teonorm
Perfil obstáculo	S	Sin perf	il de obstác	ulos							
Sombras cercar	as	1	Según cade	enas				Efecto el	éctrico	100 %	
Características Módulo FV Original PVsys Número de módul N° total de módul Potencia global g Caract. funcionar Superficie total	generador FN t database los FV os FV enerador niento del ger	Si-po erador (50° Sup	bly Mo Fabric En s N° mód Nominal (S C) V i erficie mód	delo ante serie ulos GTC) mpp ulos delo	CS6P Cana 22 m 132 36.3 609 \ 216 m Powa	dian S dian S dulos Wp 1 ² dor 2	P olar lı Eı 0.0 TI	nc. En p Pnom u n cond. fur Superf. L 3	aralelo initaria inciona. I mpp célula	6 cadenas 275 Wp 32.6 kWp 54 A 193 m²	; (50°C)
Custom paran	leters definitio	Tei	nsión Funci	ona.	200-8	100 V	nergy	Pnom ι	unitaria	17.0 kWa	с
Banco de inverso	res	N	l° de invers	ores	2 uni	lades		Potenc	ia total	34 kWac	
Factores de péro Factor de pérdida Pérdida Óhmica Pérdida Calidad I Pérdidas Mismate Efecto de inciden	dida Generad as térmicas en el Cablead Módulo ch Módulos cia, perfil defi	lor FV o Res.g	Uc (cc lobal gener usuario (IAI	onst) ador M): Us	20.0 192 r	W/m²k nOhm ned IA	Frac Frac Frac Frac	Uv (cción de Pé cción de Pé cción de Pé ofile	viento) erdidas erdidas erdidas	0.0 W/m²l 1.5 % en -0.5 % 1.0 % en	< / m/s STC MPP
10°	20°	30°	40°		50°	60	•	70°	80°	90°	
0.998	0.998	0.995	0.992	0.	986	0.97	70	0.917	0.76	3 0.00	0
Necesidades de	los usuarios	: Carg	a ilimitada ((red)				Tradius	Ciốn sin nara	antía. Sólo el tevro :	nglés está narantivad

ANEXO V. COLEGIO SANTA QUITERIA

Cio											
				Deal			Č	al estas			g
315	stema C	onecta	do a la	Red	: Par	ame	tros	de la s	imula	cion	
Proyecto :	Quite	eria_275	W_(A)								
Lugar geográfico			Ма	adrid					País	España	
Ubicación Hora definido com	0		La Hora I	atitud egal	40.45 Huso	°N hor U	т	Lo	ngitud Altitud	-3.72° W	
			AI	bedo	0.20	0.014		t (lite 10	00.004		
Datos climatologicos	:		Alpeo	arete	PVGIS CM SAF, satelite 1998-2011 - Sintesis						
Variante de simulad	ción: A	Alpedrete Fecha	e _3_quite a de simula	e ria24 ación	19/12	est2 2/17 00	h28				
									UV.		
Parámetros de la sim	nulación		Incline	ación	20°				Acimut	٥°	
Modelos empleados	sceptor		Transpos	ición	Pere	,		-	Difuso	o Perez Me	teonorm
Perfil obstáculos		Sin perfi	il de obstá	culos	1 010.				211030	7 0102, 1010	
Sombras cercanas			Según cad	enas				Efecto el	éctrico	100 %	
Características gener	rador FV										
Módulo FV Original PVsyst data Número de módulos F N° total de módulos FV Potencia global genera Caract. funcionamiento Superficie total	abase V / ador o del gener	Si-po rador (50° Sup	oly Mo Fabric En s N° móc Nominal (S C) V erficie móc	odelo cante serie lulos STC) mpp lulos	CS64 Cana 17 m 153 42.1 471 \ 250 m	K - 275 dian S ódulos kWp ′ n²	P olar Iı Eı	nc. En pa Pnom u n cond. fur Superf.	aralelo nitaria iciona. I mpp célula	9 cadenas 275 Wp 37.8 kWp 80 A 223 m ²	(50°C)
Inversor Custom parameters Características	definition	Ter	Mo Fabrio nsión Func	odelo cante iona.	Powa Kaco 200-8	ador 14 new e 800 V	1.0 TI nergy	_ 3 Pnom u	initaria	12.5 kWa	с
Banco de inversores		N	° de invers	ores	3 uni	dades		Potenc	ia total	38 kWac	
Factores de pérdida	Generado	r FV									
Factor de pérdidas tér	micas		Uc (c	onst)	20.0	W/m²K		Uv (viento)	0.0 W/m²l	< / m/s
Pérdida Óhmica en el Pérdida Calidad Módul Pérdidas Mismatch Mó Efecto de incidencia, p	Cableado lo ódulos þerfil definio	Res.gl do por el u	obal gener usuario (IA	rador M): Us	99 m ser def	Ohm ined IA	Frac Frac Frac M pro	ción de Pé ción de Pé ción de Pé ción de Pé	erdidas erdidas erdidas	1.5 % en -0.5 % 1.0 % en	STC MPP
10°	20°	30°	40°	Ę	60°	60°		70°	80°	90°	
0.998	0.998	0.995	0.992	0.	986	0.97	0	0.917	0.76	3 0.00	0
Necesidades de los u	isuarios :	Carga	a ilimitada	(red)							

ANEXO VI. COLEGIO EL PERALEJO

PVSYST V6.64 17/12/17 Pagina 1/4 Sistema Conectado a la Red: Parámetros de la simulación Proyecto : COLEGIO EL PERALEJO Lugar geográfico Alpedrete Pais España Ubicación Latitud 40.65' N Longitud -4.02' W Hora definido como Hora Legal Huso hor, UT Altitud 900 m Jabedo 0.20 Datos climatológicos: Alpedrete PVCIS CM SAF, satélite 1998-2011 - Síntesis Variante de simulación : PERALEJO 275 Wp Fecha de simulación 17/12/17 01h21 Parámetros de la simulación Orientación Plano Receptor Inclinación 25' Acimut 25' Modelos empleados Transposición Perez, Meteonorm Perez, Meteonorm Perfil obstáculos Sim perfil de obstáculos Sentration functiona, 25' Wp Modulos FV Características generador FV Sipoly Modelo Pora diduos FV En areito 27' Mp Victual de modulos FV En serie 22' modulous En areito functiona, 25' Wp Gadenas Superfice total Superfice total Superfice total Superfice total Superfice total Características Tensión Funciona, 200-90' P nom unitaria 17.0 kWac Ba					
Sistema Conectado a la Red: Parámetros de la simulación Proyecto : COLEGIO EL PERALEJO Lugar geográfico Alpedrete País España Ubicación Latitud 40.65* N Longitud -4.02* W Hora definido como Hora Legal Huso hor. UT Altitud 900 m Jabedo 0.20 Datos climatológicos: Alpedrete PVGIS CM SAF, satélite 1998-2011 - Sintesis Variante de simulación : PERALEJO 275 Wp Fecha de simulación 17/12/17 01h21 Parámetros de la simulación Orientación Plano Receptor Inclinación 25* Acimut 25* Modelos empleados Sin perfil de obstáculos Sombreado lineal Características generador FV Módulo FV Sipoly Modelo CS6K - 275P Original PVsyst database En paralelo 6 cadenas Nº Total de módulos FV Sipoly Modelo CS6K - 275P Original PVsyst database En paralelo 6 cadenas Nº Total de módulos FV Nimero de módulos FV Nimero de módulos FV Nimero de módulos FV Sipoly Modelo CS6K - 275P Original PVsyst database Sipoly fue total 132 Ponom unitaria 270 Wp CS0 Wp (50°C) Garacterísticas Tensión Fu	PVSYST V6.64				17/12/17 Página 1/4
Proyecto : COLEGIO EL PERALEJO Lugar geográfico Alpedrete País España Ubicación Latitud 40.65* N Longitud 40.02* N Longitud 40.02* N Hora definido como Albed 0.20 Datos climatológicos: Alpedrete PVGIS CM SAF, satélite 1998-2011 - Síntesis Variante de simulación : PERALEJO 275 Wp Fecha de simulación 17/12/17 01h21 Parámetros de la simulación Orientación Plano Receptor Inclinación 25* Acimut 25* Modelos empleados Sin peril de obstáculos Sombras cercanas Sombras do lineal Características generador FV Nimero de módulos FV En serie 22 módulos Ponon unitaria 275 Wp Original PVsyst database Fabricante Caracta funcionaniento del generador (S0°C) Ym módulos S122 Ponon unitaria 275 Wp Vitotal de módulos FV En serie 22 módulos Pino monitaria 275 Wp Styperfice total S120 Pinon unitaria 275 Wp Superficie total Superficie módulos FV N'mé do tos 33.3 KWp En cond.functiona. 32.6 KWp (S0°C) Caracat. funcionaniento del generador (S0°C)	Sistema C	onectado a la Re	d: Parámetros o	le la simula	ción
Lugar geográfico Alpedrete País España Ubicación Latitud 40.65* N Longitud 40.27 W Hora definido como Hora Legal Huso hor, UT Altitud 900 m Datos climatológicos: Alpedrete PVGIS CM SAF, satélite 1998-2011 - Sintesis Variante de simulación: PERALEJO 275 Wp Fecha de simulación 17/12/17 01h21 Parámetros de la simulación C5* Acimut Orientación Plano Receptor Inclinación 25* Acimut 25° Modelos empleados Transposición Perez Difuso Perez, Meteonorm Sombras cercanas Sombreado lineal Características generador FV Modelo CSK - 275P Ordinal PVsyst database Fabricanti S12 Pnom unitaria 275 W(50°C) N' total de módulos FV N' módulos S13 kWp En serie 33 kWp Superficie total Superficie módulos S16 m² S00-800 V Imp 54 A Superficie total Superficie módulos 216 m² S00-800 V Pnom unitaria	Proyecto : COLI	EGIO EL PERALEJO			
Ubicación Hora definido como Albedo Datos climatológicos: Latitud Hora Legal Huso hor. UT Altitud 900 m Albedo 0.20 Altitud 900 m 0.20 MSAF, satélite 1998-2011 - Síntesis Variante de simulación : Percha de simulación : Orientación Plano Receptor Inclinación Orientación Plano Receptor Perfil obstáculos Sombras cercanas Inclinación 25° Acimut 25° Modelos empleados Sombras cercanas Sin perfil de obstáculos Sombras cercanas Silpoly Modelo Sombras cercanas Difuso Perez, Meteonorm Perfil obstáculos Norientación plano Receptor Inclinación Inclinación Perez Difuso Difuso Perez, Meteonorm Perfil obstáculos Sombras cercanas Sombreado lineal Caractaristicas generador FV Módulos FV Silpoly En serie 22 módulos Ponon unitaria 225 Wp Potencia global generador Silpoly Nominal (STC) 33.8 Wp En cond. funciona. 23.8 Wp En cond. funciona. 23.6 Wp Imp 54.A 6 cadenas 25 Wp Superficie total Inversor Modelo Guidos FV Prabicante Superficie módulos Tensión Funciona. 200-800 V Imp 54.A Superficie total Superficie módulos Superficie modulos Caract. funciona. 200-800 V Imo 17.0 kWac Banco de inversores N° de inversores 20.9 W/m²K Uv (viento) 0.0 W/m²K / m/s Fracción de Pérdidas 1.5 % en STC Fracción de Pérdidas 1.5 % en STC Fracción de Pérdidas 1.5 % en MPP Efecto de incidencia, perfil definido por el usuario (AM) du/ulo Fracción de Pérdidas 1.0 % en MPP Efecto de incidencia, perfil de	Lugar geográfico	Alpedrete		País	España
Datos climatológicos: Alpedrete PVGIS CM SAF, satélite 1998-2011 - Síntesis Variante de simulación : PERALEJO 275 Wp Fecha de simulación 17/12/17 01h21 Parámetros de la simulación Orientación Plano Receptor Inclinación 25° Acimut 25° Modelos empleados Transposición Sombreado lineal Perez Difuso Perez, Meteonorm Características generador FV Módulo FV Sipoly Modelos En serie Canadian Solar Inc. Número de módulos FV N° módulos En serie Sz módulos En serie Scato Rev energy Potencia global generador Superficie total Superficie módulos 216 m² Superficie nódulos Pomor unitaria 17.0 kWac Banco de inversores N° dodelo Powador 20.0 TL3 Custom parameters definition Fabricante Kaco new energy Características Tensión Funciona. 20.0 W/m²K Uv (viento) 0.0 Wm²K / m/s Banco de inversores N° de inversores 2 unidades Potencia globarida. 1.5 % en STC Péridida Minicas térnicas Uc (const) 20.0 W/m²K Uv (viento) 0.0 Wm²K / m/s Péredida Subreso Sope si dose 20° <th< td=""><td>Ubicación Hora definido como</td><td>Latitud Hora Lega</td><td>40.65° N Huso hor. UT</td><td>Longitud Altitud</td><td>-4.02° W 900 m</td></th<>	Ubicación Hora definido como	Latitud Hora Lega	40.65° N Huso hor. UT	Longitud Altitud	-4.02° W 900 m
Variante de simulación : PERALEJO 275 Wp Fecha de simulación 17/12/17 01h21 Parámetros de la simulación Orientación Plano Receptor Inclinación 25° Acimut 25° Modelos empleados Transposición Perez Difuso Perez, Meteonorm Perfil obstáculos Sin perfil de obstáculos Sombreado lineal Características generador FV Módulo FV Si-poly Modelo CS6K - 275P Original PVsyst database Si-poly Modelos En serie Canadian Solar Inc. Número de módulos FV N° módulos Sa.3 Wp En conf. Incona. 22.6 KWp (50°C) Características Superficie módulos Sa.3 Wp En conf. Incona. 22.6 KWp (50°C) Características Superficie módulos 216 m² Superficie módulos 193 m² Inversor Modelo Powador 20.0 TL3 Custom parameters definition Fabricante Kaco new energy Características Tensión Funciona. 20.0 W/m²K Uv (viento) 0.0 Wm²K / m/s Banco de inversores N° de inversores 2 unidades Potencia global 1.5 % en STC Péridida Minica en el Cableado Res. global generador 192 mOhm 1.5 % en STC 5% en STC	Datos climatológicos:	Alpedrete	PVGIS CM SAF, sa	atélite 1998-201	1 - Síntesis
Fecha de simulación 17/12/17 01h21 Parámetros de la simulación Orientación Plano Receptor Inclinación 25° Acimut 25° Modelos empleados Transposición Perez Difuso Perez, Meteonorm Perfil obstáculos Sin perfil de obstáculos Sombras cercanas Sombreado lineal Características generador FV Si-poly Modelo CSSK - 275P Original PVsyst database Fabricante Canadian Solar Inc. Número de módulos FV En serie 22 modulos 12 pomo unitaria 275 Wp Potencia global generador Nominal (STC) 36.3 KWp En cond. funciona. 32.8 kWp (50°C) Características Tensión Funciona. 20.8 kWp (50°C) Tensión Funciona. 32.8 kWp (50°C) Características Tensión Funciona. 20.8 kWp (50°C) Tensión Funciona. 32.8 kWp (50°C) Características Tensión Funciona. 20.8 kWp (50°C) Tensión Funciona. 32.8 kWp (50°C) Características Tensión Funciona. 20.8 kWp (50°C) Tensión Funciona. 32.8 kWp (50°C) Características Tensión Funciona. 20.0 NTL3 Custom parameters definition Características Tensión Funciona. 20.0 NT	Variante de simulación : P	ERALEJO 275 Wp			
Parámetros de la simulación Orientación Plano Receptor Inclinación 25° Acimut 25° Modelos empleados Transposición Perez Difuso Perez, Meteonorm Perfil obstáculos Sin perfil de obstáculos Sombras cercanas Sombreado lineal Características generador FV Si-poly Modelo CS6K - 275P Original PVsyst database Fabricante Canadian Solar Inc. Número de módulos FV En serie 22 modulos 6 cadenas Nº total de módulos FV N° módulos 132 Pnom unitaria 275 Wp Potencia global generador Nominal (STC) 36.3 kWp En cond. funciona. 32.6 kWp (50°C) Caract. funcionamiento del generador (S°C) V mp 609 V I mpp 54.4 193 m² Superficie total Superficie módulos 216 m² Superf. célula 193 m² Características Tensión Funciona. 200-800 V Pnom unitaria 17.0 kWac Banco de inversores N° de inversores 2 unidades Potencia total 34 kWac Factora de pérdida Stérnicas Uc (const) 20.0 W/m²K Uv (viento) 0.0 W/m²K / m/s <		Fecha de simulación	17/12/17 01h21		
Orientación Plano Receptor Inclinación 25° Acimut 25° Modelos empleados Transposición Perez Dífuso Perez, Meteonorm Perfil obstáculos Sin perfil de obstáculos Sombras cercanas Sombreado lineal Características generador FV Módelos FV Si-poly Módelo CS6K - 275P Original PVsyst database Fabricante Canadian Solar Inc. 6 cadenas 73° Nº total de módulos FV N° módulos 132 Prom unitaria 27° Wp Potencia global generador Nominal (STC) 36.3 kWp En cond. funciona. 32.6 kWp (50°C) Características Tensión Funciona. 200e-800 V I map 54 A Superficie total Superficie módulos 216 m² Superf. célula 193 m² Inversor Modelo Powador 20.0 TL3 Superficie total 193 m² Custom parameters definition Fabricante Kaco new energy Características 17.0 kWac Banco de pérdidas térmicas N° de inversores 2 unidades Potencia total 34 kWac Factor de pérdidas firmicas Closost 0.0 W/m²K	Parámetros de la simulación				
Modelos empleados Transposición Perez Difuso Perez, Meteonorm Perfil obstáculos Sin perfil de obstáculos Sombras cercanas Sombreado lineal Características generador FV Si-poly Modelo CS6K - 275P Original PVsyst database Fabricante Canadian Solar Inc. Número de módulos FV En serie 22 módulos En paralelo 6 cadenas Nº total de módulos FV Nº módulos 132 Promo unitaria 275 Wp Potencia global generador Nominal (STC) 6.3, 4Wp En cond. funciona. 32.6 kWp (50°C) Caract funcionamiento del generador (50°C) V mp 609 V I mp 54 A Superficie total Superficie módulos 200 800 V Prom unitaria 17.0 kWac Banco de inversores N° de inversores 2 unidades Potencia total 34 kWac Factor de pérdida Stémicas en el cableado Res. global generador 192 mOhm Fracción de Pérdidas 1.5 % en STC Pérdida Ohmica en el Cableado Res. global generador 192 mOhm Fracción de Pérdidas 1.6 % en STC Pérdida Ohmica en el Cableado Res. global generador	Orientación Plano Receptor	Inclinaciór	25°	Acimut	25°
Perfil obstáculos Sin perfil de obstáculos Sombras cercanas Sombreado lineal Características generador FV Si-poly Modelo CS6K - 275P Original PVsyst database Fabricante Canadian Solar Inc. Número de módulos FV N° módulos En serie 22 módulos En paralelo 6 cadenas N' total de módulos FV N° módulos Sistent En serie 22 módulos En paralelo 6 cadenas N' total de módulos FV N° módulos Sistent Canadian Solar Inc. Numero En paralelo 6 cadenas N' total de módulos FV N° módulos Sistent En paralelo 6 cadenas 20.6 (50°C) Características Superficie total Superficie módulos 216 m² Superficie Superficie Custom parameters definition Fabricante Kaco new energy Características Denomunitaria 17.0 kWac Banco de inversores N° de inversores 2 unidades Potencia jotal 1.5 % en STC Factores de pérdida Generador FV Factoris de Pérdidas 1.6 % en STC Fracción de Pérdidas 1.5 % en STC Pérdida Ohnica en el Cableado	Modelos empleados	Transposiciór	Perez	Difuso	Perez, Meteonorm
Sombras cercanas Sombreado lineal Características generador FV Si-poly Modelo CS6K - 275P Original PVsyst database Fabricante Canadian Solar Inc. Número de módulos FV En serie 22 módulos En paralelo 6 cadenas Nº total de módulos FV Nº módulos Size NV En serie 22 módulos En paralelo 6 cadenas Potencia global generador Nominal (STC) Size NV En paralelo 6 cadenas 22.6 kWp (50°C) Caract. funcionamiento del generador Komilor (STC) V mpp 54.4 20.6 kWp (50°C) Características Superficie módulos 216 m² Superficie total 32.0 kWp cerce Custom parameters definition Fabricante Kaco new energy Características 10.7 kWac Banco de inversores N° de inversores 2 unidades Potencia total 34 kWac Factores de pérdida Generador FV Factores de pérdida Chenerador FV Fracción de Pérididas 1.5 % en STC Pérdida Mismatch Módulos Res. global generador 192 mOhm Fracción de Pérididas 1.5 % en STC Pérdida Calidad Mídoulo Fracción de Pérididas 1.0 % en	Perfil obstáculos	Sin perfil de obstáculos			
Características generador FV Si-poly Módelo CS6K - 275P Original PVsyst database Fabricante Canadian Solar Inc. Número de módulos FV N° módulos 132 Pnomunitaria 275 Wp Potencia global generador Nominal (STC) 36.3 kWp En cond. funciona. 32.6 kWp (50°C) Caract. funcionamiento del generador (50°C) V mp 60.9 V I mp 54.A Superficie total Superficie módulos Portencia global generador (50°C) V mp 60.9 V I mp 54.A Caract. funcionamiento del generador (50°C) V mp Fabricante Kaco new energy Características Tensión Funciona. 20.0 800 V Porom unitaria 17.0 kWac Banco de inversores N° de inversores 2 unidades Potencia total 34 kWac Factore de pérdida Generador FV Factorida Gibeado Res. global generador 192 mOhm Fracción de Pérdidas 1.5 % en STC Pérdida Ohmica en el Cableado Res. global generador 192 mOhm Fracción de Pérdidas 1.0 % en MPP Efecto de incidencia, perfil definido por el usuario (IAM): User defined IAM profile 1.0 % en MPP 10 0.998 0.992 0.986 <td< td=""><td>Sombras cercanas</td><td>Sombreado linea</td><td></td><td></td><td></td></td<>	Sombras cercanas	Sombreado linea			
Inversor Modelo Powador 20.0 TL3 Custom parameters definition Fabricante Kaco new energy Características Tensión Funciona. 200-800 V Pnom unitaria 17.0 kWac Banco de inversores N° de inversores 2 unidades Potencia total 34 kWac Factores de pérdida Generador FV Factor de pérdidas térmicas Uc (const) 20.0 W/m²K Uv (viento) 0.0 W/m²K / m/s Pérdida Calidad Módulo Res. global generador 192 mOhm Fracción de Pérdidas -0.5 % Pérdida Calidad Módulos Fracción de Pérdidas -0.5 % Pérdida Calidad Módulos Fracción de Pérdidas 1.0 % en MPP Efecto de incidencia, perfil definido por el usuario (IAM): User defined IAM profile 0.000 90° 10° 20° 30° 40° 50° 60° 70° 80° 90° 0.998 0.998 0.995 0.992 0.986 0.970 0.917 0.763 0.000 Necesidades de los usuarios : Carga illimitada (red)	Características generador FV Módulo FV Original PVsyst database Número de módulos FV N° total de módulos FV Potencia global generador Caract. funcionamiento del gener Superficie total	Si-poly Modelo Fabricante En serie N° módulos Nominal (STC) ador (50°C) V mpp Superficie módulos	CS6K - 275P Canadian Solar Inc 22 módulos 132 36.3 kWp En 609 V 216 m ²). En paralelo Pnom unitaria cond. funciona. I mpp Superf. célula	6 cadenas 275 Wp 32.6 kWp (50°C) 54 A 193 m²
Banco de inversores N° de inversores 2 unidades Potencia total 34 kWac Factores de pérdida Generador FV Factor de pérdidas térmicas Uc (const) 20.0 W/m²K Uv (viento) 0.0 W/m²K / m/s Pérdida Óhmica en el Cableado Res. global generador 192 mOhm Fracción de Pérdidas 1.5 % en STC Pérdida Calidad Módulo Fracción de Pérdidas 1.0 % en MPP Efecto de incidencia, perfil definido por el usuario (IAM): User defined IAM profile 80° 90° 10° 20° 30° 40° 50° 60° 70° 80° 90° 0.998 0.998 0.995 0.992 0.986 0.970 0.917 0.763 0.000 Necesidades de los usuarios : Carga ilimitada (red)	Inversor Custom parameters definition Características	Modelo Fabricante Tensión Funciona	Powador 20.0 TL3 Kaco new energy 200-800 V	3 Pnom unitaria	17.0 kWac
Factores de pérdida Generador FV Factor de pérdidas térmicas Uc (const) 20.0 W/m²K Uv (viento) 0.0 W/m²K / m/s Pérdida Óhmica en el Cableado Res. global generador 192 mOhm Fracción de Pérdidas 1.5 % en STC Pérdida Calidad Módulo Fracción de Pérdidas 1.5 % en STC Pérdidas Mismatch Módulos Fracción de Pérdidas 1.0 % en MPP Efecto de incidencia, perfil definido por el usuario (IAM): User defined IAM profile 10° 20° 30° 40° 50° 60° 70° 80° 90° 0.998 0.998 0.995 0.992 0.986 0.970 0.917 0.763 0.000	Banco de inversores	N° de inversores	2 unidades	Potencia total	34 kWac
Pérdida Ominica en el Cableado Res. global generador 192 monin Pracción de Pérdidas 1.5 % en STC Pérdida Calidad Módulos Fracción de Pérdidas -0.5 % Pérdidas Mismatch Módulos Fracción de Pérdidas 1.0 % en MPP Efecto de incidencia, perfil definido por el usuario (IAM): User defined IAM profile 10° 20° 30° 40° 50° 60° 70° 80° 90° 0.998 0.998 0.995 0.992 0.986 0.970 0.917 0.763 0.000 Necesidades de los usuarios : Carga ilimitada (red)	Factores de pérdida Generador Factor de pérdidas térmicas	r FV Uc (const	20.0 W/m²K	Uv (viento)	0.0 W/m²K / m/s
10° 20° 30° 40° 50° 60° 70° 80° 90° 0.998 0.998 0.995 0.992 0.986 0.970 0.917 0.763 0.000	Pérdida Chimica en el Cableado Pérdida Calidad Módulo Pérdidas Mismatch Módulos Efecto de incidencia, perfil definic	Res. global generado lo por el usuario (IAM): l	Fracci Fracci Jser defined IAM profi	ión de Pérdidas ión de Pérdidas ión de Pérdidas le	-0.5 % en STC -0.5 % 1.0 % en MPP
0.998 0.998 0.995 0.992 0.986 0.970 0.917 0.763 0.000 Necesidades de los usuarios : Carga ilimitada (red)	10° 20°	30° 40°	50° 60°	70° 80°	90°
	Necesidades de los usuarios :	Carga ilimitada (red		0.317 0.70	<u> </u>

PVSYST V6.64							17/12/17	Página 3/4	
	Sistema	Conecta	ado a la	Red: R	esultad	os principale	es		
Provecto :	COLE	GIO EL PI	ERALEJO						
Variante de sim	ulación : PE	RALEJO	275 Wp						
Parámetros princ	ipales del siste	ma Tipo	de sistema	Coned	tado a la r	ed			
Sombras cercana Orientación Camp Módulos FV Generador FV Inversor Banco de inversor Necesidades de lo	as os FV es os usuarios	Somb N° N° 0 Carga ili	reado linea inclinación Modelo de módulos Modelo de unidades mitada (red)	l 25° CS6K 3 132 Powac 3 2.0	- 275P Ior 20.0 TL	acimut Pnom Pnom total 3 Pnom Pnom total	25° 275 Wp 36.3 kWp 17.00 kW 34.0 kW a	ac I c	
Resultados princ Producción del Sis	ipales de la sim stema Fact	ulación Energía or de rendi	n producida miento (PR)	60.67 85.70	MWh/añ o P %	roduc. específico	1671 kWt	n/kWp/año	
Producciones normaliza	das (por kWp instalad	o): Potencia n	ominal 36.3 kWp	.		Factor de rendimier	nto (PR)		
Lc: Pedda colectada (pordidas general dor FV) 0.65 kWh/KWpdia 0.12 kWh/KW									
			PERAL	EJO 275 V	/p				
		Ba	ances y res	ultados pi	rincipales			_	
	GlobHor	DiffHor	T Amb	Globinc	GlobEff	EArray E_G	rid PR		
Enero	61.1	26.87	3.90	90.7	88.4	3.123 3.04	7 0.926	-	
Febrero	85.4	32.45	4.00	115.2	112.7	3.918 3.82	0.915		
Marzo	139.8	57.32	7.40	166.7	163.2	5.490 5.35	0.885		
Abril	159.6	60.65	11.00	172.8	168.7	5.634 5.49	07 0.877		
Мауо	201.5	70.52	14.80	201.2	196.4	6.384 6.22	.6 0.852		
Junio	226.8	63.51	19.80	219.1	214.1	6.778 6.60	0.831		
Julio	245.8	51.63	24.20	242.7	237.7	7.281 7.09	0.805		
Agosto	213.3	45.07	19 10	184.8	180.0	5 753 5 6.66	0 0.809		
Octubre	109.4	40.49	13.60	143.7	140.2	4.664 4.55	0.030		
Noviembre	68.1	28.60	7.90	99.5	97.3	3.357 3.27	5 0.907		
Diciembre	56.4	24.82	4.80	86.6	84.4	2.971 2.89	0.922		
Año	1722.6	553.11	12.90	1950.3	1906.4	62.205 60.6	70 0.857		
Leyendas:	Leyendas:GlobHorIrradiación global horizontalGlobEffGlobal efectivo, corr. para IAM y sombreadosDiffHorIrradiación difusa horizontalEArrayEnergía efectiva en la salida del generadorT AmbTemperatura AmbienteE_GridEnergía reinyectada en la redGlobIncGlobal incidente plano receptorPRFactor de rendimiento								
PVsyst Classroom License, Dpte	o Física Aplicada - Univ Pol	it. Madrid (FGUPN	/) (Spain)			Traducción sin gar	antía, Sólo el texto i	nglés está garantizado	

ANEXO VII. COLEGIO LOS NEGRALES

PVSYST V6.64							19/12/17	Página 1/4
Sistema C	conectado	a la Re	d: Pa	rámetro	s de la s	imula	ción	
Proyecto : cole	gio LOS NE	GRALES						
Lugar geográfico		Madrid	ł			País	España	
Ubicación		Latitud	40.4	5° N	L	ongitud	-3.72° W	
Hora delinido como		Albedo	0.20))		Altitud	11 600	
Datos climatológicos:		Alpedrete	PVG	IS CM SAF	, satélite 19	98-201	1 - Síntesis	
Variante de simulación :	Nueva varia	nte de sir	nulacio	ón				
	Fecha de	e simulaciói	n 19/1	2/17 00h18				
Parámetros de la simulación								
Orientación Plano Receptor		Inclinació	n 30°			Acimut	8°	
Modelos empleados	Tr	ansposició	n Pere	z		Difuso	Perez, Me	teonorm
Perfil obstáculos	Sin perfil de	obstáculos	6					
Sombras cercanas	Somb	reado linea	I					
Características generador FV Módulo FV Original PVsyst database Número de módulos FV N° total de módulos FV Potencia global generador Caract. funcionamiento del gene Superficie total	Si-poly Nor rador (50°C) Superfid	Modelo Fabricanto En serio N° módulos minal (STC) V mpr cie módulos	 CS6 Cana 16 m 48 13.2 443 78.6 	K - 275P adian Solar Iódulos 0 kWp V m ²	Inc. En p Pnom i En cond. fui Superf	aralelo unitaria nciona. I mpp . célula	3 cadenas 275 Wp 11.85 kW 27 A 70.1 m ²	s p (50°C)
Inversor Custom parameters definition Características	Tensió	Modelo Fabricante n Funciona	 Pow Kaco 200- 	ador 14.0 ⁻ o new energ 800 V	TL3 gy Pnom	unitaria	12.5 kWa	c
Banco de inversores	N° de	e inversore:	s 1un	idades	Potenc	cia total	12.5 kWa	с
Factores de pérdida Generado	or FV							
Factor de pérdidas térmicas		Uc (const) 20.0	W/m²K	Uv	(viento)	0.0 W/m²l	< / m/s
Pérdida Óhmica en el Cableado Pérdida Calidad Módulo Pérdidas Mismatch Módulos Efecto de incidencia, perfil defini	Res. globa do por el usua	Il generado ario (IAM): I	r 279 Jserde	mOhm Fra Fra Fra fined IAM p	acción de P acción de P acción de P arofile	érdidas érdidas érdidas	1.5 % en -0.5 % 1.0 % en	STC MPP
10° 20°	30°	40°	50°	60°	70°	80°	90°	
0.998 0.998	0.995	0.992	0.986	0.970	0.917	0.76	3 0.00	
Necesidades de los usuarios :	Carga ilir	mitada (red)					

ANEXO VIII. MANUAL DE USUARIO DEL GEOPORTAL gSolarRoof

En esta guía se describen el funcionamiento del geoportal *gSolarRoof* para el municipio de Alpedrete, a través del cual se accede a la información relativa al uso de la energía solar mediante herramientas de búsqueda, visualización y navegación sobre un mapa.

Desde este geoportal se puede consultar los datos relacionados con cada edificio del municipio, considerando como unidad básica de representación la parcela catastral. En su desarrollo se ha tratado de diseñar una interfaz sencilla y de fácil comprensión. Las funciones básicas configuradas incluyen:

I. Ventanas emergentes

II. Herramientas de control

	Introduzca Dirección		Q	A
	Buscador de	direcciones		Extensión predeterminada
	+	۲		←→
	Zoom	Buscar mi ubicación		Navegar extensión
III. Herra	mientas de utilida	des		

IV. Botones desplegables

Imprimir Ayuda

Leyenda Lista de capas

I. VENTANAS EMERGENTES

Las ventanas emergentes se generan al seleccionar cualquier edificio en el mapa y muestran la información relacionada con los atributos de cada capa de entidades del mapa. Al seleccionar los edificios aparece una breve descripción de sus características.

Figura 7. Ventana emergente para los edificios.

II. HERRAMIENTAS DE CONTROL

Buscador de direcciones

Permite a los usuarios buscar ubicaciones por las direcciones en el mapa. Al ser un motor de búsquedas internacional, hay que concretar el municipio correspondiente a la dirección deseada.

[1] Cuando se introduce el nombre de un lugar en el cuadro de búsqueda, aparecen sugerencias de diferentes localizaciones como en cualquier sistema de búsqueda por direcciones.

i in and the	AYUNTAMIENTO	gSolarRe	oof ALPE	DRETRE
🖶 🛨	Avenida Canteros	XQ	- Aler	3415
0	Avenida Canteros, 28430, Alp Madrid, Comunidad de Madrid Avenida Canteros, 28439, Alp Madrid, Comunidad de Madrid Avenida Canteros, Independe	edrete, I, ESP edrete, I, ESP		A
∷≣	Chimalhuacán, México, 56350 Avenida Canteros, El Olivar, Chimalhuacán, México, 56350 Avenida Canteros, Xochiaca,), MEX		
	Chimalhuacán, México, 56350 Avenida Canteros, Barrio Can Chimalhuacán, México, 56356), MEX teros, 6, MEX	50	

Figura 8. Herramienta 'Buscador de direcciones'.

[2] Aparecerá una ventana emergente en la ubicación del lugar con la información disponible.

Figura 9. Resultado de la herramienta 'Buscador de direcciones'.

Zoom

Botones para acercar (+) o alejar (-) la vista del mapa en la que nos encontramos.

- [1] Para controlar el zoom en la visualización del mapa también es posible usar la rueda central del ratón. Además, se puede pulsar y mantener presionada la tecla Mayúscula y arrastrar un cuadro en el mapa.
- [2] Para desplazarse panorámicamente por el mapa se utilizan las teclas de flechas del teclado. Otra forma de desplazarse consiste en mantener presionado el ratón y arrastrando.

Figura 10. Herramienta 'Zoom'.

Extensión predeterminada

Establece la vista a la extensión del mapa inicial, aplicando el zoom del mapa a la posición de inicio.

Figura 11. Herramienta 'Extensión predeterminada'.

Buscar mi ubicación

Si el dispositivo desde el que se realiza la consulta tiene GPS, permite detectar su ubicación y aplica el zoom centrando el mapa en la misma, mostrar la información referente a los edificios adyacentes.

Figura 12. Herramienta 'Buscar mi ubicación'.

Navegar extensión

Permite navegar por el mapa hasta una extensión de la vista anterior o siguiente que haya sido visualizada previamente.

Figura 13. Herramienta 'Extensión navegar'.

III. HERRAMIENTAS DE UTILIDADES

Vista general del mapa

Botón desplegable que muestra la posición y extensión de la ventana visible en cada momento. La extensión actual del mapa se representa como un rectángulo dentro de la vista general del mapa, permitiendo su desplazamiento para modificar la posición de la vista actual.

Figura 14. Herramienta 'Vista general del mapa'.

[1] Para expandir la imagen, utilizar el icono de maximizar.

Figura 15. Opción expandir la imagen de la vista general.

[2] Para ocultar la vista general del mapa, volver a seleccionar el icono.

Pantalla completa

Permite abrir la escena al modo pantalla completa. Para volver a la pantalla inicial se puede utilizar el botón o pulsar 'Esc' en el teclado.

Figura 16. Herramienta 'Pantalla completa'.
Galería de mapas

Presenta una galería de mapas base y permite al usuario elegir el mapa base que más le convenga en cada momento, desde mapas físicos o imágenes de satélites a mapas de carreteras.

Figura 17. Herramienta 'Galería de mapas'.

[1] Seleccionar la vista en miniatura del mapa que se desea visualizar para cambiar el mapa base.

Figura 18. Selección de mapas base.

Medición

Permite al usuario medir el área de un polígono, la longitud de una línea o encontrar las coordenadas de un punto.

Figura 19. Herramienta 'Medición'.

[1] Medición de área: Seleccionar el icono de medición de área y, a continuación, dibujar un polígono en el mapa. Para terminar de dibujar el polígono haga doble clic. Se pueden cambiar las unidades de área en el menú desplegable.

Figura 20. Opción 'Medición de área'.

[2] Medición de distancia: Seleccionar el icono de medición de distancia, a continuación, dibujar una línea en el mapa con dos o más puntos. Para terminar de dibujar la línea haga doble clic. Se pueden cambiar las unidades de distancia en el menú desplegable.

Figura 21. Opción 'Medición de distancia'.

[3] Medición de ubicación: Seleccionar el icono de medición de ubicación y, a continuación, marque un punto en el mapa. Se muestran las coordenadas del punto en grados (decimales). Se puede cambiar el formato de visualización de coordenadas a grados/minutos/segundos en el menú desplegable.

Figura 22. Opción 'Medición de ubicación'.

Vista dividida

0

Se trata de una barra deslizante que permite comparar dos capas visualizadas simultáneamente en el mapa.

Figura 23. Herramienta 'Vista dividida'.

[1] Siempre compara la capa marcada visible con la que esté inmediatamente por debajo. Para que se muestren las capas correctamente, en la ventana desplegable que se genera al ejecutar la aplicación se ha de seleccionar la capa superior visible en ese momento.

Foto	oltaica: Su	perficie	e dispo	nible		*
Térmir	o municipa	d.				
Núcleo	s urbanos					
Edificio	S					
Fotov	oltaica: Su	perficie	e dispo	nible		
Fotovo	ltaica: Pote	encia dis	ponible			
Fotovo	ltaica: Ene	rgía anu	al disp	onible		
Agua d	aliente san	itaria: S	Superfic	ie dispor	nible	
Agua d	aliente san	itaria: E	nergía	anual dis	sponible	
Radiad	ón solar ai	nual				
World	Imagery					

Figura 24. Selección de capas a visualizar en la vista dividida.

[2] Una vez activado deslice la herramienta para mostrar el contenido de las capas visibles del mapa.

Figura 25. Resultado de la herramienta 'Vista dividida'.

[3] Seleccionar el icono de Vista dividida para desactivarlo.

IV. BOTONES DESPLEGABLES

Imprimir

Permite imprimir la vista del mapa actual en la que se encuentre el usuario con diferentes formatos de imágenes.

Figura 26. Herramienta 'Imprimir'.

[1] Seleccione el 'Título del mapa', 'Diseño' y 'Formato' para el mapa que desee exportar. El formato MAP_ONLY muestra en la impresión el mapa pero no información marginal como como el título o la leyenda.

Imprimir	×	<
Título de mapa:	ArcGIS Web Map	
Diseño:	A4 Portrait 👻	
Formato:	PDF -	
	@Avanzado ▼ ⊟Imprimir	

Figura 27. Ventana para la impresión del mapa.

[2] En la pestaña 'Avanzado' se dispone de un menú con las opciones de impresión para establecer la escala, autor y la calidad de la impresión.

	To	Escala/exte Preservar:	nsión de mapa: escala de mapa extensión de mapa		
		Forzar escala:	O		
1		Metadatos de diseño:			
		Autor:	Web AppBuilder for <i>i</i>		
		Copyright:			
		Incluir leyer	nda: 🗸		
Imprimir		Tamaño MAR	P_ONLY:		
		Ancho (px):	670		
Titulo de mapa:	ArcG	Alto (px):	500		
Diseño:	A4 Pe	Calidad de in	npresión:		
Formato:	PDF	PPP:	96		
		Avanzado	→ ⊖Imprimir		

Figura 28. Opciones avanzadas para impresión del mapa.

[3] Después de definir las opciones del mapa, al completarse el proceso de impresión se puede descargar el mapa.

Imprimir		×
Título de mapa:	Мар	
Diseño:	A4 Portrait	•
Formato:	JPG	•
	@Avanzado ▼ ⊖Imprim	ir
1. 🛃 Ar 2. 📄 🔳	rcGIS Web Map Creando impresión	
		.2

Figura 29. Finalizar el proceso de impresión del mapa.

[4] Finalizada la impresión es posible borra el historial de impresiones en la pestaña de 'Borrar impresiones'.

Ayuda

Contiene el manual de usuario con una breve descripción del funcionamiento de las herramientas, botones y ventanas emergentes.

Figura 30. Botón 'Ayuda'.

Leyenda

Muestra la leyenda correspondiente a las capas visibles en cada momento.

Figura 31. Botón 'Leyenda'.

Lista de capas

Muestra las capas de información presentes, marcando o desmarcando la casilla de cada capa se pueden hacer visibles o no.

Figura 32. Botón 'Lista de capas'.

[1] Marcando cada una de las capas se muestra su simbología y usando el menú desplegable se activan y expanden todas a la vez.

Figura 33. Opciones del menú desplegable en el listado de capas.

[2] Usando el menú desplegable de cada capa con el icono (…) aparecen opciones para acercar la capa en la vista del mapa, modificar la transparencia del color y desplazarlas arriba o abajo en la lista.

Figura 34. Menú desplegable de cada capa de datos.

ANEXO IX. MAPAS TEMÁTICOS

La cartografía temática del municipio de Alpedrete incluye los siguientes mapas para cada uno de los cuales se ha dividido en el municipio en cinco hojas:

- Fotovoltaica: Superficie disponible. Hojas 1 a 5.
- Fotovoltaica: Potencia disponible (Silicio Multicristalino). Hojas 1 a 5.
- Fotovoltaica: Energía anual disponible (Silicio Multicristalino). Hojas 1 a 5.
- Agua caliente sanitaria (Viviendas): Superficie disponible. Hojas 1 a 5.
- Agua caliente sanitaria (Viviendas): Energía anual disponible (Placa Plana). Hojas 1 a 5.

Mapa 3. Fotovoltaica: Superficie disponible. Hoja 1.

Mapa 4. Fotovoltaica: Superficie disponible. Hoja 2.

Mapa 5. Fotovoltaica: Superficie disponible. Hoja 3.

Mapa 6. Fotovoltaica: Superficie disponible. Hoja 4.

Mapa 7. Fotovoltaica: Superficie disponible. Hoja 5.

Mapa 8. Fotovoltaica: Potencia disponible (Silicio Multicristalino). Hoja 1.

Mapa 9. Fotovoltaica: Potencia disponible (Silicio Multicristalino). Hoja 2.

Mapa 10. Fotovoltaica: Potencia disponible (Silicio Multicristalino). Hoja 3.

Mapa 11. Fotovoltaica: Potencia disponible (Silicio Multicristalino). Hoja 4.

Mapa 12. Fotovoltaica: Potencia disponible (Silicio Multicristalino). Hoja 5.

Mapa 13. Fotovoltaica: Energía anual disponible (Silicio Multicristalino). Hoja 1.

Mapa 14. Fotovoltaica: Energía anual disponible (Silicio Multicristalino). Hoja 2.

FOTOVOLTAICA

ENERGÍA DISPONIBLE (Silicio Multicristalino)

Mapa 15. Fotovoltaica: Energía anual disponible (Silicio Multicristalino). Hoja 3.

Mapa 16. Fotovoltaica: Energía anual disponible (Silicio Multicristalino). Hoja 4.

Mapa 17. Fotovoltaica: Energía anual disponible (Silicio Multicristalino). Hoja 5.

Mapa 18. Agua caliente sanitaria (Viviendas): Superficie disponible. Hoja 1.

Mapa 19. Agua caliente sanitaria (Viviendas): Superficie disponible. Hoja 2.

Mapa 20. Agua caliente sanitaria (Viviendas): Superficie disponible. Hoja 3.

Mapa 21. Agua caliente sanitaria (Viviendas): Superficie disponible. Hoja 4.

Mapa 22. Agua caliente sanitaria (Viviendas): Superficie disponible. Hoja 5.

Mapa 23. Agua caliente sanitaria (Viviendas): Energía anual disponible (Placa Plana). Hoja 1.

Mapa 24. Agua caliente sanitaria (Viviendas): Energía anual disponible (Placa Plana). Hoja 2.

Mapa 25. Agua caliente sanitaria (Viviendas): Energía anual disponible (Placa Plana). Hoja 3.

Mapa 26. Agua caliente sanitaria (Viviendas): Energía anual disponible (Placa Plana). Hoja 4.

Mapa 27. Agua caliente sanitaria (Viviendas): Energía anual disponible (Placa Plana). Hoja 5.

